Help me!!!!
Bt Tết khó quá
Giải giùm vs
Tìm x,y thỏa mãn x^2+y^2+1=xy+x+y
Cho x,y là 2 số nguyên tố thỏa mãn x2 + 45 = y2. Tổng x, y
giải cụ thể giùm mình nha, gấp lắm, help me
bạn vòa đường link này là dc https://olm.vn/hoi-dap/detail/11276671901.html
Ta có : x, y là hai số nguyên tố ( chẵn và lẻ )
Vì y2 do tổng của hai số bất kì ( x2 + 45 ) nên y2 phải là số nguyên tố lẻ ( nếu y2 là số nguyên tố chẵn, tức là 2 thì vô lí ! )
Vậy x2 là số nguyên tố chẵn ( chỉ có một số nguyên tố chẵn, là 2 )
Ta được :
22 + 45 = y2
⇒⇒y2 = 49
\(Cho\) \(x,y\) thuộc R+ , thỏa mãn xy=1
chứng minh \(\left(x+y+1\right)\left(x^2+y^2\right)+\frac{4}{x+y}>=8\)
help me help me
Giúp mình vs
Tìm x,y thuộc Z
a)49-y^2=6(x-2021)^2
b)x^2 + xy + y^2=2x+y
c)x^2 + xy + y^2=x+y
d)x^2 + 3xy + 3y^2 =3y
e)x^2 - 2xy - 5y^2=y+1
Bài b:
Đến đoạn này bạn xét như bài a nhé.
Bài c cũng tương tự câu b, bạn nhân 2 vào cả 2 vế, chuyển vế đổi dấu và ghép vế trái lại thành tổng các bình phương, vế phải là một số tự nhiên. Đến đoạn này cũng xét như bài a.
Còn bài d và bài e thì mình chưa biết làm thế nào, nhưng mình nghĩ vế trái sẽ là bình phương của tổng hoặc hiệu của x và y, vế phải là bình phương của tổng hoặc hiệu của y và một số nào đó. Tuy nhiên chắc là sẽ phải nhân thêm một số nào đó bởi vì nếu không nhân khi làm sẽ ra phân số, không xét được.
Giúp mình vs
Tìm x,y thuộc Z
a)49-y^2=6(x-2021)^2
b)x^2 + xy + y^2=2x+y
c)x^2 + xy + y^2=x+y
d)x^2 + 3xy + 3y^2 =3y
e)x^2 - 2xy - 5y^2=y+1
Tìm x,y là các số nguyên thỏa mãn đẳng thức:
x^2 - xy - y + 2 = 0
Help me!!!!
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Cho x,y thỏa mãn: \(\sqrt{3+x^2}+x+\sqrt{3+y^2}+y=3\). Tính giá trị của BT: \(A=4x^2+xy+y^2+15\)
1. Cho a>=2. Tìm GTNN của P= a + 1/a.
2. Cho x và y >0 thỏa mãn x+y+xy=1
Tìm GTNN của P=1/x+y +1/x +1/y
3.Cho x và y thuộc tâp hợp số R thỏa mãn x + y =1
Tìm GTNN của P= x3 + y3 +xy.
Làm ơn giải giùm mình nhé!
1. Cho a>=2. Tìm GTNN của P= a + 1/a.
2. Cho x và y >0 thỏa mãn x+y+xy=1
Tìm GTNN của P=1/x+y +1/x +1/y
3.Cho x và y thuộc tâp hợp số R thỏa mãn x + y =1
Tìm GTNN của P= x3 + y3 +xy.
Làm ơn giải giùm mình nhé!
bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng