Cho hình chữ nhật ABCD, cạnh AB = 2, AD = 1. Kẻ AH vuông góc với AB; M là trung điểm của BH, N là trung điểm của CD.
Tích vô hướng của \(\overrightarrow{MN}\left(\overrightarrow{DC}+\overrightarrow{AH}\right)\)bằng:
A. 0
B. 2
C. 3
D. 4
Cho hình chữ nhật ABCD, qua A kẻ đường thẳng vuông góc với BD tại H. Biết AB=10cm, AH=6cm. Tính AD và diện tích hình chữ nhật ABCD.
BH=căn 10^2-6^2=8cm
=>BD=10^2/8=12,5cm
=>AD=7,5cm
S ABCD=7,5*10=75cm2
Cho hình chữ nhật ABCD (AB > BC) , E là điểm trên cạnh AB sao cho AD = AE . Kẻ EF vuông góc với CD tại F , kẻ BH vuông góc với BF tại điểm H.
a) Tứ giác AEFD là hình gì? Vì sao?
b) Chứng minh AH \(\perp\)HC
a). cho hình chữ nhật ABCD,biết AD=48cm,CD=36cm.tính độ dài cạnh AC.
b). cho tam giác nhọn ABC,kẻ AH vuông góc BC (H thuộc BC).cho AB=13cm,AH=12cm,HC=16cm.tính độ dài cạnh AC,BC.
1. Cho ∆ABC vuông tại A có AB=3 ,AC=4 kẻ đường cao AH . tính độ dài cạnh BC ,AH, HB ,HC 2. CHO ∆ABC vuông tại A đường cao AH . Biết AH=2,BH=1 . Tính độ dài các của ∆ABC 3. Cho hình chữ nhật ABCD , từ A kẻ đường thẳng vuông góc với BD và CD lần lượt tại H và E cho AB =4cm , AD=3cm a, Tính độ dài đường chéo BD của hình chữ nhật ABCD b; Tính AH
1.
\(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\left(pytago\right)\)
Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=1,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=3,2\left(cm\right)\\AH=\sqrt{3,2\cdot1,8}=5,76\left(cm\right)\end{matrix}\right.\)
2.
Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=BH\cdot HC=HC\\AB^2=BH\cdot BC=BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HC=4\left(cm\right)\\AB=\sqrt{HC+HB}=\sqrt{4+1}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)
\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-5}=2\sqrt{5}\left(cm\right)\)
Vậy \(AB=\sqrt{5}\left(cm\right);BC=5\left(cm\right);AC=2\sqrt{5}\left(cm\right)\)
Cho hình chữ nhật ABCD có AB = 24cm, AD = 26 cm. Kẻ AH vuông góc với BD tại H. a)Tính độ dài HD, AH. b)Tia AH cắt CD tại M. Chứng minh AH.AM = DH.DB
b: Xét ΔBAD vuông tại A có AH là đường cao
nên \(DH\cdot DB=AD^2\left(1\right)\)
Xét ΔADM vuông tại D có DH là đường cao
nên \(AH\cdot AM=AD^2\left(2\right)\)
Từ (1) và (2) suy ra \(DH\cdot DB=AH\cdot AM\)
Cho biết hình AB = 8 cm kẻ AD vuông góc với BC CI vuông góc với CD sao cho ah = 4 cm a y = 7 cm bằng 7 cm khi đó aich là hình chữ nhật tính diện tích hình bình hành ABCD tính diện tích hình chữ nhật ABCD tính tổng diện tích của hai tam giác AHD và CB.
Cho tam giác ABC vuông tại A nội tiếp đường tâm O, biết AB = 3cm, AC = 4cm. a) tính bán kính của (O) . b) vẽ đường kính AD. Chứng minh : ABCD là hình chữ nhật. c) kẻ AH vuông góc với BC tại H. Chứng minh: AB. AC = AH. AD
a: \(R=\dfrac{BC}{2}=2.5\left(cm\right)\)
b: Xét tứ giác ABDC có
O là trung điểm của AD
O là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Cho hình chữ nhật ABCD, qua A kẻ đường vuông góc với BD tại H. Biết AB = 20cm; AH = 12cm. Tính chu vi hình chữ nhật ABCD
Hình tự vẽ nha bạn
Xét tam giác ABD vuông tại A (ABCD là hình chứ nhật nên góc A = 90 độ)
Áp dụng hệ thức lượng trong tam giác vuông
\(\dfrac{1}{AD^2}+\dfrac{1}{AB^2}=\dfrac{1}{AH^2}\)
Thay số vào tính được AD = 15cm
Chu vi HCN = (20+15).2 = 70cm
Xét tam giác AHB vuông tại H có
\(AH^2+HB^2=AB^2\)( đl PYtago)
T/s \(12^2+HB^2=20^2\)
=>\(HB^2=20^2-12^2\)
=> \(HB^2=256\)
=> \(HB=16\)
Xét tam giác DAB vuông tại A có
\(AH^2=DH.HB\)
⇔ \(12^2=DH.16\)
=> \(DH=24\)
Xét tam giác AHD vuong tại H có
\(AH^2+DH^2=AD^2\)( đl Pyta go)
T/s \(12^2+24^2=AD^2\)
=> AD = \(12\sqrt{5}\)
Chu vi HCN ABCD là
( AB + AD ).2
= ( 20 +12\(\sqrt{5}\)).2
= 93,6 cm
Vây chu vi là 93,6 cm
hình chữ nhật abcd (ab<ad). kẻ ah vuông bc. trên tia đối lấy e sao cho ae=bd. tính góc ecd