Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lilykit
Xem chi tiết
Mai Quỳnh Vy
Xem chi tiết
Em là Sky yêu dấu
28 tháng 6 2017 lúc 9:34

1/97 chứ sao lại 1/91!

giải:

đặt :1/5+1/14+1/28+1/44+1/61+1/85+1/97 =A

ta có :A=1/5(1/14+1/28+1/44)+(1/61+1/85+1/97)

A<1/5(1/14.3)+(1/61.3)

A<1/5+3/14+3/61

A<1/5+3/12+1/20

A<1/5+1/4+1/20

=>A<1/2

VẬY dpcm

Hoàng Thu Huyền
Xem chi tiết
Nguyễn Trúc Mai
1 tháng 5 2018 lúc 16:56

Hỏi đáp Toán

Loan Nguyen
Xem chi tiết
Hoàng Phú Huy
28 tháng 3 2018 lúc 19:36

Cách 1: Tính hết kết quả vế trái là so sánh được => đpcm 
Cách 2: Ta đánh giá: Cho a, b là 2 số dương nếu a < b thì 1/a > 1/b 
Vậy: 
VT < 1/5 + 1/14 + 1/14 + 1/14 + 1/14 + 1/14 
= 1/5 + 5/14 = (14 + 25)/(5.14) = 39/70 < 1 (đpcm) 
Có thể còn cách khác, bạn tìm thêm đi.

Bùi Minh Quân
Xem chi tiết
maivananh
Xem chi tiết
Khánh Linh
Xem chi tiết
Phương Trâm
7 tháng 5 2017 lúc 22:46

Sai đề. Sửa đề :v

Cmr: \(\dfrac{1}{5}+\dfrac{1}{14}+\dfrac{1}{28}+\dfrac{1}{44}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{97}< \dfrac{1}{2}\)

Giải:

Đặt \(A=\dfrac{1}{5}+\dfrac{1}{14}+\dfrac{1}{28}+\dfrac{1}{44}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{97}\)

Ta có:

\(A=\dfrac{1}{5}+\left(\dfrac{1}{14}+\dfrac{1}{28}+\dfrac{1}{44}\right)+\left(\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{97}\right)\)

\(A< \dfrac{1}{5}\left(\dfrac{1}{14.3}\right)+\left(\dfrac{1}{61.3}\right)\)

\(A< \dfrac{1}{5}+\dfrac{3}{14}+\dfrac{3}{61}\)

\(A< \dfrac{1}{5}+\dfrac{3}{12}+\dfrac{1}{20}\)

\(A< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)

\(\Rightarrow A< \dfrac{1}{2}\)

Vậy \(\dfrac{1}{5}+\dfrac{1}{14}+\dfrac{1}{28}+\dfrac{1}{44}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{97}< \dfrac{1}{2}\) \((đpcm)\)

jeff
Xem chi tiết
Phạm Quang Vũ
5 tháng 5 2019 lúc 11:37

Ta có \(\frac{1}{5}=\frac{1}{5}\)

\(\frac{1}{14}< \frac{1}{10};\frac{1}{28}< \frac{1}{10}\)

\(\frac{1}{44}< \frac{1}{40};\frac{1}{61}< \frac{1}{40};\frac{1}{85}< \frac{1}{40};\frac{1}{97}< \frac{1}{40}\)

\(\Rightarrow\frac{1}{5}+\frac{1}{14}+\frac{1}{28}+\frac{1}{44}+\frac{1}{61}+\frac{1}{85}+\frac{1}{97}< \frac{1}{5}+\frac{1}{10}+\frac{1}{10}+\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+\frac{1}{40}=\frac{1}{5}+\frac{1}{5}+\frac{1}{10}=\frac{5}{10}=\frac{1}{2}\)\(\Rightarrow A< \frac{1}{2}\)

Nguyễn Kim Chi
Xem chi tiết
Nguyen anh
15 tháng 7 2019 lúc 14:43

Hỏi đáp Toán