Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngân Hoàng Trường
Xem chi tiết
Cíu iem
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 10 2021 lúc 10:27

Đặt \(\left\{{}\begin{matrix}a=x+y\\b=y+z\\c=x+z\end{matrix}\right.\Leftrightarrow x+y+z=\dfrac{a+b+c}{2}\)

\(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\\ =8\left(\dfrac{a+b+c}{2}\right)^3-a^3-b^3-c^3\\ =\left(a+b+c\right)^3-a^3-b^3-c^3\\ =\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)-\left(a+b\right)^3+3ab\left(a+b\right)-c^3\\ =3\left(a+b\right)\left(ac+bc+c^2+ab\right)\\ =3\left(a+b\right)\left(b+c\right)\left(a+c\right)\\ =3\left(x+y+y+z\right)\left(y+z+z+x\right)\left(z+x+x+y\right)\\ =3\left(x+2y+z\right)\left(x+y+2z\right)\left(2x+y+z\right)\)

Tiến Bùi Việt
Xem chi tiết
vũ trang_8a
Xem chi tiết
Tùng Nguyễn
Xem chi tiết
Nguyễn Thị Bích Thảo
Xem chi tiết
Lê Tài Bảo Châu
9 tháng 10 2019 lúc 21:57

Hướng dẫn

Đặt là x,y,z

Chứng minh được là \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Scarlett Ohara
Xem chi tiết
....
14 tháng 7 2021 lúc 15:36

undefined

Nguyễn Khánh Duy
Xem chi tiết
Vũ Cao Minh
30 tháng 8 2021 lúc 14:19

\(\left(x+y+z\right)^3=x^3+y^3+z^3+\left(x+y\right)\left(x+z\right)\left(y+z\right)\)

\(\left(x+y+z\right)^3-x^3+y^3+z^3\)

\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Khách vãng lai đã xóa
trâm lê
Xem chi tiết
Lấp La Lấp Lánh
1 tháng 11 2021 lúc 22:38

1D  2C

Nguyễn Lê Phước Thịnh
1 tháng 11 2021 lúc 22:39

Câu 1: D

Câu 2: C