Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
mai trang
Xem chi tiết
Xem chi tiết
Mayan Ngọc
Xem chi tiết
Thảo Thảo
22 tháng 8 2016 lúc 20:32

Do BC=2.AB mà E trung điểm BC=>BE=AB

XÉT tam giác DBA và tam giác DBE 

BDchung

gócABD=gócEBD(BD phân giác)

BE=AD(cmt)

=>TAM GIÁC BDA=TAM GIÁC DBE

Đức Anh Lê
Xem chi tiết
Vũ Phương My
Xem chi tiết
Vũ Tuyết Nga
Xem chi tiết
Đõ Phương Thảo
21 tháng 12 2020 lúc 23:14

bạn tự vẽ hình nhé

vì AD là phân giác của \(\widehat{BAC}\) ⇒ \(\widehat{BAD}=\widehat{MAD}\) =\(\dfrac{\widehat{BAC}}{2}\)

a) xét ΔABD và ΔAMD, có:

AM=AB (gt)

\(\widehat{BAD}=\widehat{MAD}\) (cmt)

AD chung

⇒ ΔABD = ΔAMD (c.g.c) (đpcm)

b) Từ ΔABD = ΔAMD (cmt)

    ⇒ BD=DM( 2 cạnh t/ứng) (đpcm)

       \(\widehat{ABD}=\widehat{AMD}\) (2 góc t/ứng)(đpcm)

c) phần này có lẽ đề bài sai , phải là c/m Δ BDN =ΔMDC mới đúng.

vì \(\widehat{ABD}=\widehat{AMD}\) (cmt) ⇒ \(\widehat{DBN}=\widehat{DMC}\) ( do \(\widehat{ABD}\) và \(\widehat{DBN}\) là 2 góc kề bù; \(\widehat{AMD}\) và \(\widehat{DMC}\)là 2 góc kề bù)

vì \(\widehat{BDN}\) và \(\widehat{MDC}\) là 2 góc đối đỉnh⇒ ​​\(\widehat{BDN}\)​ =\(\widehat{MDC}\)

Xét Δ BDN và ΔMDC, có:

\(\widehat{BDN}\) =\(\widehat{MDC}\)(cmt)

BD=DM (cmt)

\(\widehat{DBN}=\widehat{DMC}\) (cmt)

⇒Δ BDN = ΔMDC (g.c.g) (đpcm)

d) từ Δ BDN = ΔMDC (cmt) ⇒ BN=MC

mà AB=AM ⇒ AB+BN =AM+MC

                    ⇔AN=AC.⇒ Δ ANC cân tại A.

và AB=AM(gt) ⇒ ΔABM cân tại A

      mà AD là phân giác của \(\widehat{BAM}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔABM⇔ AD ⊥ BM(đpcm)

    Vì  Δ ANC cân tại A (cmt) 

         AD là phân giác của \(\widehat{NAC}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔACN.⇔ AD⊥CN.

                Mà AD⊥ BM⇒ BM//CN(đpcm)

 

 

Akai Haruma
22 tháng 12 2020 lúc 1:43

Bổ sung hình để các bạn dễ hình dung:

undefined

Gia An Nguyễn
Xem chi tiết
Anni
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 1 2022 lúc 20:07

\(\widehat{DBC}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)

mà \(\widehat{DCB}=30^0\)

nên \(\widehat{DBC}=\widehat{DCB}\)

hay ΔDBC cân tại D

Nguyễn Vân
Xem chi tiết