Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Thị Nhung
Xem chi tiết
Công chúa thủy tề
Xem chi tiết
ĐOÀN ĐINH SỸ
Xem chi tiết
Nhã Doanh
29 tháng 9 2018 lúc 17:21

2.

\(P=\dfrac{\sqrt{x-2018}}{x+2}+\dfrac{\sqrt{x-2019}}{x}\)

\(P=\dfrac{\sqrt{\left(x-2018\right).2020}}{\left(x+2\right)\sqrt{2020}}+\dfrac{\sqrt{\left(x-2019\right).2019}}{\sqrt{2019}.x}\)

Áp dụng BĐT AM-GM:

\(\sqrt{\left(x-2018\right).2020}\le\dfrac{1}{2}\left(x-2018+2020\right)=\dfrac{1}{2}\left(x+2\right)\)

\(\sqrt{\left(x-2019\right).2019}\le\dfrac{1}{2}\left(x-2019+2019\right)=\dfrac{1}{2}x\)

\(\Rightarrow P\le\dfrac{x+2}{2\sqrt{2020}\left(x+2\right)}+\dfrac{x}{2\sqrt{2019}.x}=\dfrac{1}{2\sqrt{2020}}+\dfrac{1}{2\sqrt{2019}}\)

\("="\Leftrightarrow x=4038\)

Sociu Vân
Xem chi tiết
tth_new
2 tháng 12 2018 lúc 9:20

Đặt \(\sqrt{x-3}=t\left(t\ge0\right)\Rightarrow x=t^2+3\)

\(A=2019+t^2+3-t-2\sqrt{t^2+3}\)

\(\ge2019+3-2\sqrt{3}\) (do \(t\ge0\))

Dấu "=" xảy ra \(\Leftrightarrow t=0\Leftrightarrow x=3\)

Vậy \(A_{min}=2019+3-2\sqrt{3}\Leftrightarrow x=3\)

tth_new
18 tháng 12 2019 lúc 9:02

Cách kia sai mất rồi:( Nếu sửa đề thành tìm min thì làm thế này:

Ta có: \(A=\frac{1}{2}\left(\sqrt{x-3}-1\right)^2+\frac{1}{2}\left(\sqrt{x}-2\right)^2+2018\ge2018\)

Hoặc: \(A=\frac{1}{2}\left(x-4\right)^2\left[\frac{1}{\left(\sqrt{x-3}+1\right)^2}+\frac{1}{\left(\sqrt{x}+2\right)^2}\right]+2018\ge2018\)

Đẳng thức xảy ra khi x = 4

Khách vãng lai đã xóa
Hoàng Hạnh
Xem chi tiết
nguyễn phương ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 21:25

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 21:48

c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)

1122
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2023 lúc 19:24

1:

\(A=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

3: A nguyên

=>-5căn x-15+17 chia hết cho căn x+3

=>căn x+3 thuộc Ư(17)

=>căn x+3=17

=>x=196

1122
4 tháng 8 2023 lúc 10:09
Ngọc Mai
Xem chi tiết
An Thy
12 tháng 7 2021 lúc 15:44

a) \(P=\dfrac{3x+3\sqrt{x}-9}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\left(x\ge0,x\ne1\right)\)

\(=\dfrac{3x+3\sqrt{x}-9}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\dfrac{3x+3\sqrt{x}-9+\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)

b) \(P=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}=\dfrac{3\sqrt{x}+6+2}{\sqrt{x}+2}=3+\dfrac{2}{\sqrt{x}+2}\)

Để \(P\in Z\Rightarrow2⋮\sqrt{x}+2\Rightarrow\sqrt{x}+2=2\left(\sqrt{x}+2\ge2\right)\)

\(\Rightarrow x=0\)

c) Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\dfrac{2}{\sqrt{x}+2}\le1\Rightarrow3+\dfrac{2}{\sqrt{x}+2}\le4\)

\(\Rightarrow P_{max}=4\) khi \(x=0\)

Pink Pig
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 4 2022 lúc 21:38

a: Khi x=4 thì \(A=\left(\dfrac{2+2}{2+1}-\dfrac{2\cdot2-2}{2-1}\right)\cdot\left(4-1\right)=\dfrac{1}{3}\cdot3=1\)

b: \(A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-2\right)\cdot\left(x-1\right)\)

\(=\dfrac{\sqrt{x}+2-2\sqrt{x}-2}{\sqrt{x}+1}\cdot\left(x-1\right)=-\sqrt{x}\left(\sqrt{x}-1\right)\)