Cho tam giác MND có MN = 10cm,MD = 24cm,DN = 26cm.
a.Chứng minh tam giác MND vuông tại M
b.Tính đường cao MI,góc N và góc D.
c.Vẽ IH vuông góc với MD,IK vuông góc với MN.Chứng minh HK = MI
a) Xét tam giác MND có:
\(MN^2+MD^2=10^2+24^2=676\)
\(DN^2=26^2=676\)
\(\Rightarrow MN^2+MD^2=DN^2\)
=> Tam giác MND vuông tại M(Pytago đảo)
b) Áp dụng HTL:
\(MI.DN=MN.MD\)
\(\Rightarrow MI=\dfrac{MN.MD}{DN}=\dfrac{10.24}{26}=\dfrac{120}{13}\left(cm\right)\)
c) Xét tứ giác MKID có:
\(\widehat{KMD}=\widehat{MKI}=\widehat{MDI}=90^0\)
=> Tứ giác MKID là hình chữ nhật
=> HK=MI
Cho tam giác MND (MN<MD) có MD là phân giác của góc M ( D thuộc NP). Trên MP lấy E sao cho ME=MN
a) Chứng minh ND = DE
b) Gọi F là giao điểm của MN và ED. Chứng minh tam giác EMF = tam giác NMD. Tam giác MFD là tam giác gì?
c) So sánh DN là DP
KHông cần vẽ hình cũng được nhé! Làm câu c thôi cũng được
Chị tam giác MNP vuông tại M biết MN=8 cm ,MP=12cm. Đường cao MD a, CMR tâm giác MND đồng dạng tấm giác DNM b, MN^2=ND×NP c, Tính MD
a, đề sai rồi bạn
b, Xét tam giác MND và tam giác PNM ta có :
ta có : ^N _ chung
^MDN = ^PMN = 900
Vậy tam giác MND ~ tam giác PNM (g.g)
=> MN/PN=ND/MN=> MN^2 = ND.PN
c, \(S_{MNP}=\dfrac{1}{2}MN.PM;S_{MNP}=\dfrac{1}{2}PN.DM\Rightarrow MN.PM=PN.DM\)
\(\Rightarrow MD=\dfrac{MN.PM}{PN}=\dfrac{8.12}{\sqrt{8^2+12^2}}=\dfrac{24\sqrt{13}}{13}cm\)
a) Cho tam giác ABC vuông tại A biết AB = 5cm và AC = 12cm .Tính BC . b) Tam giác MNP có độ dài ba cạnh MN = 6cm, MP = 8cm , NP = 10cm có phải là tam giác vuông không? Vì sao
a) Cho tam giác ABC vuông tại A biết AB = 5cm và AC = 12cm .Tính BC . b) Tam giác MNP có độ dài ba cạnh MN = 6cm, MP = 8cm , NP = 10cm có phải là tam giác vuông không? Vì sao? Cần gấp
a.Tam giác ABC vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)\(\Rightarrow5^2+12^2=BC^2\Rightarrow169=BC^2\Rightarrow BC=13\left(cm\right)\)
b. Tam giác MNP là tam giác vuông vì \(6^2+8^2=10^2\)
Chúc bạn học tốt!
Cho tam giác MNP vuông tại M, đường cao MD. Biết MD = 12cm, PD = 16cm. Từ D kẻ đường cao DK của tam giác MND. Tính DK
Áp dụng hệ thức lượng trong tam giác vuông có:
\(MD^2=ND.DP\)\(\Rightarrow ND=\dfrac{MD^2}{DP}=\dfrac{12^2}{16}=9cm\)
\(\dfrac{1}{DK^2}=\dfrac{1}{ND^2}+\dfrac{1}{DM^2}=\dfrac{25}{1296}\)
\(\Rightarrow DK=\dfrac{36}{5}\) (cm)
Vậy...
Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MD là đường cao ứng với cạnh huyền PN, ta được:
\(MD^2=PD\cdot ND\)
\(\Leftrightarrow ND=\dfrac{12^2}{16}=\dfrac{144}{16}=9\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔMDN vuông tại D có DK là đường cao ứng với cạnh huyền MN, ta được:
\(\dfrac{1}{DK^2}=\dfrac{1}{DM^2}+\dfrac{1}{DN^2}\)
\(\Leftrightarrow\dfrac{1}{DK^2}=\dfrac{1}{12^2}+\dfrac{1}{9^2}=\dfrac{25}{1296}\)
\(\Leftrightarrow DK^2=\dfrac{1296}{25}\)
hay \(DK=7.2\left(cm\right)\)
Vậy: DK=7,2cm
GIẢI ÔN TẬP TOÁN HÌNH
1/ Giải tam giác ABC vuông tại A có B=60 độ BC=20cm
2/ cho tam giác MND có MN =10cm,MD=24cm,DN=26cm
a/ Cm tam giác MND vuông tại M
b/ tính đg cao MI góc N,D (làm tròn để đễ tính)
c/ Cho ID vuông góc MD, IK vuông MN chứng minh HK=MI
d/từ M kẻ đg trung tuyens MQ,Q thuộc ND. Tings góc IMQ
3/ Vẽ tam giacsABC vuông tại A. AH dg cao, BH=18,HC=6
Tìm AB,AC
2/ cho tam giác ABC vuông tại B có AB=3cm,BC=4cm
a/ tính tỉ số lg giác góc A. suy ra tỉ số lg giác góc C
b/ tính góc A
1/ Hình vẽ: vẽ dễ bạn tự vẽ ha
Có Xét tam giác vuông ABC
\(\widehat{B}+\widehat{C}=90^o\)
\(60^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}=30^o\)
\(sin\widehat{B}=\frac{AC}{BC}=\frac{AC}{20}=sin60^o\)
\(\Rightarrow AC=sin60^o\cdot20=10\sqrt{3}\)(cm)
\(sin\widehat{C}=\frac{AB}{BC}=\frac{AB}{20}=sin30^o\)
\(\Rightarrow AB=sin30^o\cdot20=10\)(cm)
2/
a, ΔMNP cân tại M => MN=MP
=> góc MND=MPD
Xét ΔMND và ΔMPD có:
MN=MP
góc MND=MPD
góc NMD=PMD ( đường phân giác MD )
=> ΔMND = ΔMPD (g.c.g)
b. ΔMND = ΔMPD => góc MDN=MDP = 90 độ
Xét tam giác MDN có góc MDN = 90 độ,ta có:
MN2=MD2+ND2MN2=MD2+ND2
=> 132=122+ND2132=122+ND2
=> ND2=25ND2=25
=> ND = 5
c. Xét ΔHMD và ΔKMD có:
MD chung
góc HMD=KMD
góc MHD=MKD = 90 độ
=> ΔHMD = ΔKMD ( cạnh huyền-góc nhọn)
d. Xét tam giác HDN và tam giác KDP có:
góc HND=KPD
góc NHD=PKD = 90 độ
ND=DP ( do ΔMND = ΔMPD)
=> tam giác HDN = tam giác KDP
=> HD=KD (1)
Có: MN=MH+HN
MP=MK+KP
mà MN=MP ( do ΔMND = ΔMPD )
NH=KP
=> MH=MK ( 2)
Từ (1) (2) =>
3/ Hình vẽ:
Ta Có
\(BH+HC=BC\)
\(18+6=24=BC\)
Xét tam giác ABC, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(AB^2=BH\cdot BC\)(định lí 2)
\(AB^2=18\cdot24\)
\(AB^2=432\Rightarrow AB=12\sqrt{3}\)
Xét tam giác ABC, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(AC^2=HC\cdot BC\)(đinh lí 1)
\(AC^2=6\cdot24\)
\(AC^2=144\Rightarrow AC=12\)
Cho tam giác có 3 đường cao, độ dài lần lượt là 5cm, 12cm, 13cm. Hỏi tam giác đó có vuông không?
giúp với mình với T△T
số đo 3 cạnh tam giác 12cm,13cm,5cm có phải là tam giác vuông không
-Vì 13 là số đo lớn nhất, \(13< 12+5=17\)
\(\Rightarrow\)Tồn tại tam giác có số đo 12cm, 13cm, 5cm.
-Vì \(12^2+5^2=169=13^2\)
\(\Rightarrow\)Tam giác đó là tam giác vuông (định lí Py-ta-go đảo)