chứng tỏ rằng nếu đa thức ax3 + bx2 + cx + d có giá trị nguyên với mọi xlaf số nguyên thì 6a, 2b, a+ b+ c là các số nguyên
Cho đa thức P(x) = ax3 + bx2 + cx + d với a, b, c, d là các hệ số nguyên. Chứng minh rằng nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a, b, c, d đều chia hết cho 5
Chứng minh: f(x)=ax3+bx2+cx+d có giá trị nguyên với mọi x nguyên khi và chỉ khi 6a, 2b, a+b+c và d là số nguyên
Chứng minh cả chiều xuôi lẫn chiều ngược giúp mình với ạ
<3
-Ta chia làm 2 bài:
*C/m: Khi 6a, 2b, a+b+c và d là số nguyên thì đa thức trên có giá trị nguyên với mọi x nguyên.
- 6a nguyên \(\Rightarrow\)a nguyên.
- 2b nguyên \(\Rightarrow\)b nguyên.
- a+b+c nguyên \(\Rightarrow\)c nguyên.
\(\Rightarrow\)đpcm.
*C/m: Khi đa thức trên có giá trị nguyên với mọi x nguyên thì 6a, 2b, a+b+c và d là số nguyên.
\(f\left(0\right)=d\) nguyên.
\(f\left(1\right)=a+b+c+d\) nguyên \(\Rightarrow\) a+b+c nguyên.
\(f\left(2\right)=8a+4b+2c+d\) nguyên \(\Rightarrow8a+4b+2c\) nguyên.
\(\Rightarrow4a+2b+c\) nguyên
\(\Rightarrow4a+2b+c-\left(a+b+c\right)\) nguyên.
\(\Rightarrow3a+b\) nguyên.
\(f\left(3\right)=27a+9b+3c+d\) nguyên \(\Rightarrow27a+9b+3c\) nguyên
\(\Rightarrow9a+3b+c\) nguyên
\(9a+3b+c-\left(a+b+c\right)\) nguyên.
\(\Rightarrow8a+2b\) nguyên \(\Rightarrow4a+b\) nguyên
\(\Rightarrow a,b\) nguyên.
Cho đa thức f(x)=ax^3+bx^2+cx+d. Chứng minh rằng nếu f(x) nhận giá trị nguyên với mọi giá trị nguyên của x thì d; 2b; 6a là các số nguyên
Bạn tham khảo lời giải tại đây:
Chứng tỏ rằng nếu đa thức \(M\left(x\right)=ax^3+bx^2+cx+d\)có giá trị nguyên với mòi x nguyên thì \(6a,2b,a+b+c,d\)
là các số nguyên
\(M_{\left(x\right)}=a\cdot x^3+b\cdot x^2+c\cdot x+d\\ M_{\left(0\right)}=d\)
Mà M(x) nguyên nên d nguyên
\(M_{\left(1\right)}=a+b+c+d\) mà d nguyên nên a+b+c nguyên
\(M_{\left(2\right)}=8a+4b+2c+d\)mà d nguyên, a+b+c nguyên nên 6a+2b nguyên
\(M_{\left(-1\right)}=-a+b-c+d\)mà d nguyên, a+b+c nguyên nên b nguyên
Vì b nguyên mà 6a+2b nguyên nên 6a nguyên, 2b nguyên
\(P\left(0\right)=d\inℤ\left(1\right)\)
\(P\left(1\right)=a+b+c+d\inℤ\left(2\right)\)
\(P\left(-1\right)=-a+b-c+d\inℤ\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow2b\inℤ,2a+2c\inℤ\)
\(P\left(2\right)=8a+4b+2c+d=6a+4b+2a+2c+d\inℤ\)
\(\Rightarrow6a\inℤ\)
Vậy \(6a,2b,a+b+c\) và \(d\)là số nguyên
cho f(x)= ax3+bx2+cx+d
a, Chứng minh nếu f(x) nhận giá trị nguyên với ,ọi x nguyên thì 6a, 2b, a+b+c, d đều là số nguyên
b Chứng minh rằng nếu 6a, 2b, a+b+c, d là các số nguyên thì f(x) nhân giá trị nguyên với mọi x nguyên
CMR nếu đa thức M(x)=ax3 + bx2+cx+d có giá trị nguyên với mọi x thì 6a, 2b,a+b+c,d là các số nguyên
cho đa thức f(x) = a.x^3 + b.x^2 +c.x + d có giá trị nguyên với mọi x thuộc Z. Chứng tỏ rằng 6a và 2b là các số nguyên
chứng minh rằng f(x)=ax^3+bx^2+cx+d có giá trị nguyên với mọi x nguyên khi 6a,2b,a+b+c,d là số nguyên
Cho đa thức P(x) = ax3 + bx2 + cx + d . Chứng minh rằng 6a ; 2b ; a + b + c ; d là số nguyên thì P(x) là số nguyên với mọi số nguyên x .