Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 7 2019 lúc 4:51

Chứng minh được tam giác ADB = tam giác AEC (g-c-g) => AD = AE, từ đó tam giác ADE cân tại A.

Bình luận (0)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 2 2017 lúc 11:15

Bình luận (0)
Nguyễn Ngọc Đại 1
Xem chi tiết
Nam
Xem chi tiết
NGUYỄN HỒNG ANH
18 tháng 3 2022 lúc 19:50

ko bít

 

Bình luận (0)
Shinichi Kudo
18 tháng 3 2022 lúc 20:02

CHỜ CHÚT

Bình luận (0)
Shinichi Kudo
18 tháng 3 2022 lúc 20:03

undefined

Bình luận (0)
Dương Phùng Đăng
Xem chi tiết
phạm hoàng minh
Xem chi tiết
Bế Long Nhật
9 tháng 5 2021 lúc 20:33

A B C D

a) Xét ABD và EBD có

        BD cạnh chung

        BAD=BED(=90)

        ABD=EBD(vì BD là tia phân giác của B)

b ko biet

 

Bình luận (0)
Bế Long Nhật
9 tháng 5 2021 lúc 21:20

c) vì theo ý b) ADE là tam giác cân tại D nên theo py-ta-go AD+DE=AE

Nên AE>AD

(sai đầu bài rồi)

Bình luận (0)
Bế Long Nhật
9 tháng 5 2021 lúc 21:20

b)Vì theo ý a) BAD=BED và BD là tia phân giác của B. Nên ADE là tam giác cân

Bình luận (0)
Phương Uyên Võ Ngọc
Xem chi tiết
Đỗ Thị Dung
28 tháng 4 2019 lúc 22:14

bài 1 đề bài có sai ko?

Bình luận (0)
Phương Uyên Võ Ngọc
29 tháng 4 2019 lúc 22:08

Đề đúng nha bạn

Bình luận (0)
IS
22 tháng 2 2020 lúc 20:03

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Bình luận (0)
 Khách vãng lai đã xóa
suki
Xem chi tiết
Ngọc Trinh
31 tháng 1 2019 lúc 21:37

a, xét tam giác ABM và tam giác KBM có: AB=BK, BM chung, góc ABM= góc KBM

suy ra 2 tam giác trên bằng nhau

hok tốt

Bình luận (0)
Nguyễn Phương Uyên
1 tháng 2 2019 lúc 8:18

tu ve hinh : 

xet tamgiac ABM va tamgiac KBM co :  MB chung

goc ABM = goc MBK do BM la phan giac cua goc ABC (gt)

AB = AK (gt)

=> tammgiac ABM = tamgiac KBM (c - g - c)

Bình luận (0)
suki
1 tháng 2 2019 lúc 8:21

giúp mình câu d

Bình luận (0)
daophanminhtrung
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 22:36

a: Xét ΔAMB và ΔAMC có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó:ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó:ΔAEM=ΔAFM

Suy ra:ME=MF

hay ΔMEF cân tại M

c: Ta có: AE=AF

ME=MF

Do đó: AM là đường trung trực của FE

hay AM⊥FE

Bình luận (0)