Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Thu Hiền
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 11 2021 lúc 7:20

\(1,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-3\right)^2-4\left(-2\right)\left(-m+1\right)>0\\x_1+x_2=\dfrac{3}{-2}< 0\\x_1x_2=\dfrac{-m+1}{-2}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}17-8m>0\\-m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{17}{8}\\m>1\end{matrix}\right.\Leftrightarrow1< m< \dfrac{17}{8}\)

\(2,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-4\right)^2-4\left(-3\right)\left(-2m+1\right)\ge0\\x_1+x_2=\dfrac{4}{-3}< 0\\x_1x_2=\dfrac{-2m+1}{-3}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}28-24m\ge0\\-2m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{7}{6}\\m>\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< m\le\dfrac{7}{6}\)

phuươn dạ ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2023 lúc 0:39

\(2\left(x+y\right)+1=3xy\)

=>\(2x+2y-3xy=1\)

=>\(x\left(-3y+2\right)+2y=1\)

=>\(-x\left(3y-2\right)+2y-\dfrac{4}{3}=-\dfrac{1}{3}\)

=>\(-3x\left(y-\dfrac{2}{3}\right)+2\left(y-\dfrac{2}{3}\right)=-\dfrac{1}{3}\)

=>\(-3x\left(3y-2\right)+2\left(3y-2\right)=-1\)

=>\(\left(3y-2\right)\left(-3x+2\right)=-1\)

=>\(\left(3x-2\right)\left(3y-2\right)=1\)

=>\(\left(3x-2;3y-2\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(1;1\right);\left(\dfrac{1}{3};\dfrac{1}{3}\right)\right\}\)

mà x,y nguyên

nên (x,y)=(1;1)

 

 

Hoa Minh Ngọc
Xem chi tiết
oki pạn
4 tháng 2 2022 lúc 10:33

b. delta = \(\left(2n-1\right)^2-4.1.n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)

pt luôn có 2 nghiệm phân biệt

c.\(\left\{{}\begin{matrix}x_1=\dfrac{2n-1-1}{2}=n-1\\x_2=\dfrac{2n-1+1}{2}=n\end{matrix}\right.\)

\(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3=n^2-4n+4=\left(n-2\right)^2\)

(số bình phương luôn lớn hơn bằng 0) với mọi n

Nguyễn Huy Tú
4 tháng 2 2022 lúc 10:37

2, Ta có : \(\Delta=\left(2n-1\right)^2-4n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)

Vậy pt luôn có 2 nghiệm pb 

3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2n-1\\x_1x_2=n\left(n-1\right)\end{matrix}\right.\)

Vì x1 là nghiệm của pt trên nên ta được 

\(x_1^2=\left(2n-1\right)x_1-n\left(n-1\right)\)

Thay vào ta được 

\(2nx_1-x_1-n^2+n-2x_2+3\)

bạn kiểm tra lại đề nhé 

nguyễn ngọc phương linh
Xem chi tiết
Nguyễn Dương
17 tháng 10 2019 lúc 18:23

\(y\in\left(-\infty;\infty\right)\)

\(-2y^2-3xy-2y+2x^2+6x=1\)

\(-2y^2-3xy-2y-2x^2+6x-1=0\)

\(-2y^2-\left(3x+2\right)y+2x^2+6x-1=0\)

\(y=\frac{\sqrt{25x^2+60x-4-3x-2}}{4}\)

\(y=-\frac{\sqrt{25x^2+60x-4+3x+2}}{4}\)

#Ứng Lân

Nguyễn An
Xem chi tiết
hh hh
Xem chi tiết
alibaba nguyễn
4 tháng 2 2017 lúc 18:55

Ta có:  

x+ 2y+ 3xy + 3x + 5y = 15

<=> x+ 2y+ 3xy + 3x + 5y + 2 = 17

<=> (x2 + xy + 2x) + (2xy + 2y2 + 4y) + (x + y + 2) = 17

<=> (x + y + 2)(x + 2y + 1) = 17

=> (x + y + 2, x + 2y + 1) = (1,17; 17,1; - 1,-17; -17,-1)

Giải ra là tìm được x,y nhé

goteks Son
25 tháng 8 2019 lúc 22:32

VeryVery good.Thanks. I will give 1  for you.Love

Anh Công Trần
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2022 lúc 22:38

\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có 2 nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+1}{2}\\x_1x_2=\dfrac{m-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=-2m+1\\4x_1x_2=2m-2\end{matrix}\right.\)

Cộng vế với vế:

\(\Rightarrow2\left(x_1+x_2\right)+4x_1x_2=-1\)

Đây là hệ thức liên hệ các nghiệm ko phụ thuộc m

Nguyễn Ngọc Tho
Xem chi tiết
alibaba nguyễn
24 tháng 3 2018 lúc 10:25

\(x^2+2y^2+3xy-x-y+3=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+2y-1\right)=-3\)

nguyen hong giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 10 2023 lúc 20:49

ĐKXĐ: \(\left\{{}\begin{matrix}2x^2-1>=0\\2x-1>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\x^2>=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x>=\dfrac{\sqrt{2}}{2}\)

PT\(\Leftrightarrow\sqrt{2x^2-1}-1+x\sqrt{2x-1}-x=2x^2-x-1\)

\(\Leftrightarrow\dfrac{2x^2-1-1}{\sqrt{2x^2-1}+1}+x\cdot\dfrac{2x-1-1}{\sqrt{2x-1}+1}=\left(x-1\right)\left(2x+1\right)\)

=>\(\dfrac{2\left(x-1\right)\left(x+1\right)}{\sqrt{2x^2-1}}+2x\cdot\dfrac{x-1}{\sqrt{2x-1}+1}-\left(x-1\right)\left(2x+1\right)=0\)

=>\(\left(x-1\right)\left(\dfrac{2x+2}{\sqrt{2x^2-1}}+\dfrac{2x}{\sqrt{x-1}+1}-2x-1\right)=0\)

=>x-1=0

=>x=1