Cho tam giác ABC cân tại A có BC: 2x - 3y - 5 = 0, AB: x + y + 1 = 0, đường thẳng AC qua M(1;1). Viết phương trình cạnh AC
trong mặt phẳng Oxy cho tam giác ABC cân tại A có phương trình cạnh BC: x-2=0, phương trình cạnh AC: 2x+3y-1=0; và đường thẳng AB đi qua điểm I(-7;-3). Hãy viết phương trình đường cao kẻ từ đỉnh C của tam giác ABC
ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)
Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)
Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC
khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)
Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)
trong mặt phẳng hệ tọa độ Oxy cho tam giác ABC cân tại A . biết phương trình các đường thẳng AB,BC lần lượt là x-7y+14=0 và 2x+y-2=0. viết phương trình cạnh AC , biết đường thẳng AC đi qua M(4,0)
\(cosB=\dfrac{\left|1.2+\left(-7\right).1\right|}{\sqrt{1^2+\left(-7\right)^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
Gọi vtpt của AC có tọa độ \(\left(a;b\right)\)
\(\Rightarrow cosC=cosB=\dfrac{1}{\sqrt{10}}=\dfrac{\left|2a+b\right|}{\sqrt{a^2+b^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow2\left(2a+b\right)^2=a^2+b^2\)
\(\Leftrightarrow7a^2+8ab+b^2=0\Leftrightarrow\left(a+b\right)\left(7a+b\right)=0\)
Chọn \(a=1\Rightarrow\left[{}\begin{matrix}b=-1\\b=-7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;-1\right)\\\left(a;b\right)=\left(1;-7\right)\end{matrix}\right.\)
(Trường hợp \(\left(a;b\right)=\left(1-;7\right)\) loại do khi đó AC song song AB, vô lý)
\(\Rightarrow\) Phương trình AC: \(1\left(x-4\right)-1\left(y-0\right)=0\)
cho tam giác ABC có phương trình các đường thẳng AB , AC , BC là : AB : 2x - 3y - 1 = 0 ; AC : x + 3y + 7 = 0 ; BC : 5x - 2y + 1 = 0 . Viết phương trình tổng quát của đường cao kẻ từ đỉnh B .
cho tam giác ABC có phương trình các đường thẳng AB , AC , BC là : AB : 2x - 3y - 1 = 0 ; AC : x + 3y + 7 = 0 ; BC : 5x - 2y + 1 = 0 . Viết phương trình tổng quát của đường cao kẻ từ đỉnh B .
cho tam giác ABC có phương trình các đường thẳng AB , AC , BC là : AB : 2x - 3y - 1 = 0 ; AC : x + 3y + 7 = 0 ; BC : 5x - 2y + 1 = 0 . Viết phương trình tổng quát của đường cao kẻ từ đỉnh B .
Tìm tọa độ điểm A
Ta có: AB ∩ AC = A
=>Tọa độ điểm A là nghiệm hệ
{ 2x-3y-1=0 <=> { x = -5/11 => A(-5/11;-7/11)
{ 5x-2y+1=0`````````{ y = -7/11
♣Đương cao qua đỉnh A
Gọi (d) là đường cao qua đỉnh A
Vì (d) _|_ BC =>phương trình (d) dạng: 3x - y + m = 0
Vì A € (d) => 3.(-5/11) + 7/11 + m = 0 <=> m = 8/11
Vậy pt (d): 3x - y + 8/11 = 0 <=> 33x - 11y + 8 = 0
```````````````````
Bài 2a:Gọi (d') là đường thẳng đối xứng với (d) qua M
A(x;y) € (d) và B(x';y') là điểm đối xứng với A(x;y) qua M
=>B(x';y') € (d')
Vì M là trung điểm của AB
=>{ (x+x' )/2 = 2 =>{ x = 4 - x'
````{ (y+y' )/2 = 1 ````{ y = 2 - y'
=>A(4-x';2-y')
Vì A € (d) => 4-x' - (2 - y' ) = 0 <=> x' - y' - 2 = 0
Vậy pt (d'): x - y - 2 =0
cho tam giác ABC có phương trình các đường thẳng AB , AC , BC là : AB : 2x - 3y - 1 = 0 ; AC : x + 3y + 7 = 0 ; BC : 5x - 2y + 1 = 0 . Viết phương trình tổng quát của đường cao kẻ từ đỉnh B .
Tìm tọa độ điểm A
Ta có: AB ∩ AC = A
=>Tọa độ điểm A là nghiệm hệ
{ 2x-3y-1=0 <=> { x = -5/11 => A(-5/11;-7/11)
{ 5x-2y+1=0`````````{ y = -7/11
Đương cao qua đỉnh A
Gọi (d) là đường cao qua đỉnh A
Vì (d) _|_ BC =>phương trình (d) dạng: 3x - y + m = 0
Vì A € (d) => 3.(-5/11) + 7/11 + m = 0 <=> m = 8/11
Vậy pt (d): 3x - y + 8/11 = 0 <=> 33x - 11y + 8 = 0
tick dung cho em nhé
cho tam giác ABC có phương trình các đường thẳng AB , AC , BC là : AB : 2x - 3y - 1 = 0 ; AC : x + 3y + 7 = 0 ; BC : 5x - 2y + 1 = 0 . Viết phương trình tổng quát của đường cao kẻ từ đỉnh B .
cho tam giác ABC có phương trình các đường thẳng AB , AC , BC là : AB : 2x - 3y - 1 = 0 ; AC : x + 3y + 7 = 0 ; BC : 5x - 2y + 1 = 0 . Viết phương trình tổng quát của đường cao kẻ từ đỉnh B .