Bài 3: Tìm số tự nhiên x, biết:
126 chia hết cho x, 210 chia hết cho x, biết 15<x<30
Bài 4: Tìm số tự nhiên a lớn nhất thoả mãn:
a) 320 chia hết cho a và 480 chia hết cho a, b) 360 chia hết cho a và 600 chia hết cho a
Bài 5: Tìm số tự nhiên a lớn hơn 25, biết rằng các số 525; 875 và 280 đều chia hết cho a
Bài 3
126 ⋮ x và 210 ⋮ x
⇒ x ∈ ƯC(126; 210)
Ta có:
126 = 2.3².7
210 = 2.3.5.7
⇒ ƯCLN(126; 210) = 2.3.7 = 42
⇒ ƯC(126; 210) = Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}
Mà 15 < x < 30
⇒ x = 21
Bài 4
a) 320 ⋮ a; 480 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(320; 480)
Ta có:
320 = 2⁶.5
480 = 2⁵.3.5
⇒ a = ƯCLN(320; 480) = 2⁵.5 = 160
b) 360 ⋮ a; 600 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(360; 600)
Ta có:
360 = 2³.3².5
600 = 2³.3.5²
⇒ a = ƯCLN(360; 600) = 2³.3.5 = 120
Bài 5
525 ⋮ a; 875 ⋮ a; 280 ⋮ a
⇒ a ∈ ƯC(525; 875; 280)
Ta có:
525 = 3.5².7
875 = 5³.7
280 = 2³.5.7
⇒ ƯCLN(525; 875; 280) = 5.7 = 35
⇒ x ∈ ƯC(525; 875; 280) = Ư(35) = {1; 5; 7; 35}
Mà x > 25
⇒ x = 35
Bài 1: Tìm số tự nhiên x biết:
a) (3x +17) chia hết (x - 3)
b) (3x +19) chia hết (2x - 3)
giúp em
Bài 1: Tìm số tự nhiên x biết:
a) (3x + 17) chia hết (x - 3)
b) (3x + 19) chia hết (2x - 3)
giúp em
a: =>3x-9+26 chia hết cho x-3
=>\(x-3\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\)
=>\(x\in\left\{4;2;5;1;16;-10;29;-23\right\}\)
b: =>6x+38 chia hết cho 2x-3
=>6x-9+47 chia hết cho 2x-3
=>\(2x-3\in\left\{1;-1;47;-47\right\}\)
=>\(x\in\left\{2;1;25;-22\right\}\)
Bài 1. Viết các tập hợp B(6), B(8), BC(6, 8), BCNN(6, 8).
Bài 2. Tìm BCNN của:
a) 60 và 280;b) 84 và 108;
c) 5; 8 và 15;d) 12; 16 và 48
Bài 3. Tìm số tự nhiên x nhỏ nhất, biết rằng :
x⋮126;x⋮198
Bài 4. Trong đại dịch Covid-19, hai bạn Hoa và Thúy cùng may một số khẩu trang để dành tặng cho các cô chú bán vé số, biết số khẩu trang mỗi người được tặng như nhau. Số khẩu trang may được nếu tặng cho mỗi người 20 khẩu trang hoặc 45 khẩu trang thì không thừa thiếu các khẩu trang nào. Biết số khẩu trang trong khoảng từ 200 đến 400, tính số khẩu trang hai bạn đã làm được ?
Bài 5. Phát động phong trào chống lãng phí, một chi Đoàn đã tổ chức cho Đoàn viên đóng góp sách giáo khoa cho học sinh vùng lũ. Khi xếp thành từng bó 12 cuốn, 15 cuốn, 18 cuốn thì đều vừa đủ không thừa cuốn nào. Tính số sách giáo khoa mà các Đoàn viên đóng góp, biết số này lớn hơn 850 và có ba chữ số?
Bài 3:
Ta có: \(x⋮126\)
\(x⋮198\)
Do đó: \(x\in BC\left(126;198\right)\)
\(\Leftrightarrow x\in B\left(1386\right)\)
mà x nhỏ nhất
nên x=1386
Bài 1 : Tìm các số tự nhiên \(x\) thoả mãn : \(2^x+3^x=35\)
Bài 2 : Tìm \(x;y\inℤ^+\) thoả mãn : \(x!+y!=\left(x+y\right)!\)
Bài 3 : Chứng minh rằng phương trình sau không có nghiệm nguyên :
\(x^{17}+y^{17}=19^{17}\)
Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).
Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,
Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)
Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.
Như vậy, \(x=y=1\)
Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.
Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)
Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn.
Vậy pt đã cho không có nghiệm nguyên dương.
Chị độc giải sau khi em biết làm thôi à.
tìm số tự nhiên x biết:
a) 121/27.54/11<x<100/21:25/126
b) x/17=60/204
c) 6+x/33=7/11
b2) tìm số tự nhiên x biết:
a) 121/27.54/11<x<100/21:25/126
b) x/17=60/204
c)6+x/33=7/11
b;\(\frac{x}{17}=\frac{60}{204}\)
=> \(x=60.17:204=5\)
c; \(6+\frac{x}{33}=\frac{7}{11}\)
=> \(6=\frac{7}{11}-\frac{x}{33}\)
=> \(6=\frac{21}{33}-\frac{x}{33}\)
=> \(6=\frac{21-x}{33}\)
=> \(21-x=198\)
=> \(x=21-198\)
=> \(x=-117\)
Bài 1: Tìm x thuộc Z biết
a) | x-7 | +x - 7=0
b) x - 2017 là số nguyên âm lớn nhất
c) x - 4 là số nguyên dương nhỏ nhất
Bài 2: Tìm số tự nhiên x biết
a)( x + 17 ) (x + 2)
b) (3x +17) ( x -3)
Bài 3: Tìm số tự nhiên x ; y biết
a) (x-2)(y+1)=17
b)(2x-1)(y+3)=36
Bài 4*:Chứng minh rằng các số sau đây nguyên tố cùng nhau
a) Hai số lẻ liên tiếp. b)2n+5 và 3n+7
Bài 5*
a) ƯCLN của hai số là 45 . Số lớn là 270 . Tìm số nhỏ
b) ƯCLN của hai số tự nhiên bằng 4 , số nhỏ bằng 8 . Tìm số lớn
Bài 5:Tìm số tự nhiên x biết 126 ⋮ x,210 ⋮ x và 10<x<40
126 chia hết cho x mà x là số tự nhiên nên x=2 hoặc 53( do 126=2*53) mà 10<x<40 nên không tồn tại x