tam giác ABC đều. trên cạnh AB, BC lấy M,N sao cho BM=CN. chứng minh: AN=CM
Cho tam giác ABC. O là điểm cách đều 3 cạnh của tam giác. Trên cạnh BC lấy điểm M sao cho BM = BA, trên cạnh CB lấy điểm N sao cho CN = CA. Gọi D, E, F lần lượt là hình chiếu của O trên BC, CA, AB. Chứng minh rằng :
a) NE = MF
b) Tam giác MON cân
a) Vì O cách đều 3 cạnh của tam giác nên OD = OE = OF
Áp dụng định lý Pytago vào tam giác vuông OBF và tam giác vuông ODB ta có:
BF=√OB2−OF2BF=OB2−OF2
BD=√OB2−OD2BD=OB2−OD2
Mà OF = OD nên BF = BD.
Tương tự áp dụng định lý Pytago vào tam giác vuông OEC và tam giác vuông ODC suy ra CE = CD
∆BAM có AB = BM nên ∆BAM là tam giác cân tại B ⇒ˆBAM=ˆBMA⇒BAM^=BMA^
Xét ∆BAM có BF = BD, BA = BM nên theo định lý Ta – lét ta có :
BFBA=BDBM⇒DF//AM⇒BFBA=BDBM⇒DF//AM⇒ DFAM là hình thang
Hình thang DFAM có ˆFAM=ˆAMDFAM^=AMD^ nên DFAM là hình thang cân
⇒{MF=ADAF=MD⇒{MF=ADAF=MD
∆ANC có AC = CN nên ∆ANC cân tại C⇒ˆCAN=ˆCNA⇒CAN^=CNA^
Xét ∆ANC có CE = CD, CA = CN nên theo định lý Ta – lét ta có :
CECA=CDCN⇒DE//AN⇒CECA=CDCN⇒DE//AN⇒ DEAN là hình thang
Hình thang DEAN có ˆCAN=ˆCNACAN^=CNA^ nên DEAN là hình thang cân
⇒{NE=ADAE=ND⇒{NE=ADAE=ND
⇒MF=NE⇒MF=NE
b) Xét ∆OEA và ∆ODN ta có :
⎧⎪⎨⎪⎩OE=ODˆOEA=ˆODNEA=DN{OE=ODOEA^=ODN^EA=DN⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA
Xét ∆OAF và ∆OMD ta có :
⎧⎪⎨⎪⎩AF=MDˆOFA=ˆODMOF=OD{AF=MDOFA^=ODM^OF=OD⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM
⇒OM=ON⇒OM=ON hay ∆MON cân tại O.
Cho tam giác ABC có AB=AC. Lấy điểm M trên cạnh AC, điểm N trên cạnh AB sao cho AM=AN. Chứng minh BM=CN.
Cho tam giác ABC đều, AB = 4cm. Trên cạnh AC cạnh BC lần lượt lấy các điểm M,N (các điểm M,N không trùng với các đỉnh tam giác ABC ) Sao cho CM=BN. Gọi G là gia điểm của AN và BM
A, Kẻ CH vuông góc AB tại H. Tính CH
b, Chứng minh AN= BM. Tính góc AGM
c, Trên tia GM lấy điểm K sao cho GK=GA. chứng minh CK=BG
Cho tam giác ABC cân tại A, cạnh đáy < cạnh bên. Trên tia đối của tia BC lấy điểm M sao cho MA = MC. Trên tia đối của AM lấy điểm N sao cho AN = BM. a) Chứng minh góc AMC = BAC; b) Chứng minh CM = CN; c) Tìm điều kiện của TG ABC để CM vuông góc với CN.
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho BM=CN. Chứng minh rằng MN // BC
Cho tam giác ABC ( AB=AC ). Trên cạnh AB lấy điểm M, trên tia đối của CA lấy điểm N sao cho AM+AN=2AB. Chứng minh: BM=CN
cho tam giác ABC cân tại A .Trên các cạnh AB,AC lần lượt lấy các điểm M và N sao cho BM=CN
â) chứng minh tam giác MAN cân
b) chứng minh BN=CM
c) chứng minh MN//BC
Cho Tam giác ABC, AB= AC, trên cạnh BC lấy điểm M và N sao cho BM=CN(M nằm giữa B và N) và AM= AN
a, chứng minh góc BAM = CAN
b, chứng minh AMN= ANM
a, Vì AB = AC => \(\Delta ABC\)cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta ABM\)và \(\Delta ACN\), ta có:
AB = AC (gt)
\(\widehat{ABC}=\widehat{ACB}\)(Chứng minh trên)
BM = CN (gt)
=> \(\Delta ABM=\Delta ACN\left(c.g.c\right)\)
=> \(\widehat{BAM}=\widehat{CAN}\)
Vậy \(\widehat{BAM}=\widehat{CAN}\)
b,Vì \(\Delta ABM=\Delta ACN\)(Chứng minh trên) => AM = AN
=> \(\Delta AMN\)cân tại A
\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)
Vậy \(\widehat{AMN}=\widehat{ANM}\)
Cho tam giác ABC có điểm M trên cạnh BC sao cho BC=4CM. Trên cạnh AC lấy điểm N sao cho CN/AN=1/3. Chứng minh MN // với AB
Xét ΔCAB có CN/CA=CM/CB
nên NM//AB