Gọi S là tập hợp tất cả số tự nhiên có 5 chữ số phân biệt được chọn từ các chữ số 1,2,3,4,5,6,7,8,9. Chọn ngẫu nhiên 1 số từ S. Tính xác suất chọn được số có tổng 4 chữ số đầu lớn hơn chữ số cuối cùng 2 đơn vị.
Gọi chữ số cuối là x thì tổng 4 chữ số đầu là \(x+2\)
\(\Rightarrow\) Tổng 5 chữ số là: \(2x+2\)
Mặt khác tổng 5 chữ số nhỏ nhất từ tập đã cho là \(1+2+3+4+5=15\)
\(\Rightarrow2x+2\ge15\Rightarrow2x\ge13\)
\(\Rightarrow x=\left\{7;8;9\right\}\)
TH1: \(x=7\Rightarrow\) tổng 4 chữ số đầu là 9 mà \(1+2+3+4>9\Rightarrow\) không tồn tại 4 chữ số thỏa mãn
TH2: \(x=8\Rightarrow\) tổng 4 chữ số đầu bằng 10
Trong 9 chữ số, chỉ có duy nhất bộ \(\left\{1;2;3;4\right\}\) có tổng bằng 10
Do đó số số trong trường hợp này là: \(4!\) số
TH3: \(x=9\Rightarrow\) tổng 4 chữ số đầu bằng \(11\Rightarrow\) có 1 bộ 4 chữ số thỏa mãn là \(\left\{1;2;3;5\right\}\)
Trường hợp này cũng có \(4!\) số
Xác suất: \(P=\dfrac{4!+4!}{A_9^5}=...\)
Gọi S là tập hợp tất cả các số tự nhiên có 6 chữ số phân biệt được lấy từ các số 1;2;3;4;5;6;7;8;9 Chọn ngẫu nhiên một số từ tập S. Xác suất chọn được số chỉ chứa ba chữ số lẻ là :
A. P = 23 42
B. P = 16 42
C. P = 16 21
D. P = 10 21
Gọi S là tập hợp tất cả các số tự nhiên gồm 3 chữ số phân biệt được chọn từ các chữ số 1, 2, 3, 4, 5, 6, 7. Chọn ngẫu nhiên 1 số từ S, gọi P là xác suất chọn được số chẵn, mệnh đề nào dưới đây đúng?
A. P = 2 7
B. P = 3 5
C. P = 2 5
D. P = 3 7
Đáp án D
Ta thu được số chẵn khi chữ số hàng đơn vị là chắn. Do vai trò của 7 số trong đó có 3 số chẵn là như nhau nên xác suất cần tính bằng 3 7
Gọi S là tập hợp tất cả các số tự nhiên gồm 3 chữ số phân biệt được chọn từ các chữ số 1, 2, 3, 4, 5, 6, 7. Chọn ngẫu nhiên 1 số từ S, gọi P là xác suất chọn được số chẵn, mệnh đề nào dưới đây đúng?
A. .
B. .
C. .
D. .
Đáp án D
Ta thu được số chẵn khi chữ số hàng đơn vị là chắn. Do vai trò của 7 số trong đó có 3 số chẵn là như nhau nên xác suất cần tính bằng
Gọi S là tập hợp tất cả số tự nhiên 8 chữ số phân biệt chọn từ các chữ số 1,3,4,5,6,7,8,9. Xác định số phần tử của S. Chọn ngẫu nhiên 1 số từ S. Tính xác suất chọn được số chẵn có tổng 4 chữ số đầu hơn tổng 4 chữ số sau 2 đơn vị.
Số phần tử của S là: \(8!\)
Gọi tổng 4 chữ số sau là S \(\Rightarrow\) tổng 4 chữ số đầu là \(S+2\)
Ta có: \(S+S+2=1+3+4+5+6+7+8+9\)
\(\Rightarrow2S=41\Rightarrow S=\dfrac{41}{2}\) (vô lý do các chữ số đều nguyên)
Vậy đề bài sai
Gọi S là tập hợp tất cả các số tự nhiên gồm sáu chữ số phân biệt được chọn từ các số 1; 2; 3; 4; 5; 6. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn có tổng của ba chữ số hàng đơn vị, hàng chục, hàng trăm lớn hơn tổng của các chữ số còn lại 3 đơn vị
n(S)=6!
Để thỏa mãn yêu cầu đề bài thì cần chọn ra 3 số có tổng là 12
=>Số trường hợp thỏa mãn là (1;5;6); (2;4;6); (3;4;5)
=>Có 3*3!*3!
=>P=3/20
Gọi S là tập hợp tất cả các số tự nhiên có 6 chữ số phân biệt được lấy từ tập X={1,2,3,4,5,6,7,8,9}. Chọn ngẫu nhiên một số từ S. Xác suất chọn được số chỉ chứa ba chữ số lẻ là
A. P = 16 21
B. P = 1 42
C. P = 23 42
D. P = 10 21
Gọi E là tập hợp các số tự nhiên gồm 3 chữ số phân biệt từ các chữ số 1, 2, 3, 4, 5. Chọn ngẫu nhiên 2 số khác nhau từ tập hợp E. Tính xác suất để 2 số được chọn có đúng 1 số có chữ số 5.
A. 7 22
B. 5 63
C. 144 295
D. 132 271
Gọi E là tập hợp các số tự nhiên gồm 3 chữ số phân biệt từ các chữ số 1, 2, 3, 4, 5. Chọn ngẫu nhiên 2 số khác nhau từ tập hợp E. Tính xác suất để 2 số được chọn có đúng 1 số có chữ số 5
A. 7 22
B. 5 63
C. 144 295
D. 132 271