Tính
a, \(\dfrac{2x}{y+x}\) + \(\dfrac{2y}{x+y}\)
b, \(\dfrac{x}{x+1}\) + \(\dfrac{3x+1}{x^2-1}\)
A = \(\dfrac{5xy^2-3z}{3xy}+\dfrac{4x^2y+3z}{3xy}\)
B = \(\dfrac{3y+5}{y-1}+\dfrac{-y^2-4y}{1-y}+\dfrac{y^2+y+7}{y-1}\)
C = \(\dfrac{6x}{x^2-9}+\dfrac{5x}{x-3}+\dfrac{x}{x+3}\)
D = \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
E = \(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\)
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
Thực hiện phép tính:
a) \(\dfrac{x}{2x-y}-\dfrac{2x-y}{4x-2y}\)
b)\(\dfrac{3x+1}{x^2-1}-\dfrac{x}{2x-2}\)
c) \(\dfrac{x-2}{x^2-4}-\dfrac{-8-x}{3x^2+6x}\)
d) \(\dfrac{2}{2x-3}-\dfrac{x}{2x+3}-\dfrac{2x+1}{9-4x^2}\)
a: \(=\dfrac{2x-2x+y}{2\left(2x-y\right)}=\dfrac{y}{2\left(2x-y\right)}\)
b: \(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{6x+2-x^2-x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2+5x+2}{2\left(x-1\right)\left(x+1\right)}\)
c: \(=\dfrac{1}{x+2}+\dfrac{x+8}{3x\left(x+2\right)}\)
\(=\dfrac{3x+x+8}{3x\left(x+2\right)}=\dfrac{4x+8}{3x\left(x+2\right)}=\dfrac{4}{3x}\)
d: \(=\dfrac{4x+6-2x^2+3x+2x+1}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{-2x^2+9x+7}{\left(2x-3\right)\left(2x+3\right)}\)
1, Thực hiện phép tính:
a, \(\dfrac{1-3x}{2}+\dfrac{x+3}{2}\)
b, \(\dfrac{2\left(x+y\right)\left(x-y\right)}{x}-\dfrac{-2y^2}{x}\)
c, \(\dfrac{3x+1}{x+y}-\dfrac{2x-3}{x+y}\)
d, \(\dfrac{xy}{2x-y}-\dfrac{x^2-1}{y-2x}\)
e, \(\dfrac{4x-1}{3x^2y}-\dfrac{7x-1}{3x^2y}\)
2, Thực hiện phép tính:
a, \(\dfrac{1}{x}.\dfrac{6x}{y}\)
b, \(\dfrac{2x^2}{y}.3xy^2\)
c, \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)
d, \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)
e, \(\dfrac{5x+10}{4x-8}.\dfrac{4-2x}{x+2}\)
f, \(\dfrac{x^2-36}{2x+10}.\dfrac{3}{6-x}\)
2)
a) \(\dfrac{1}{x}.\dfrac{6x}{y}\)
\(=\dfrac{6x}{xy}\)
\(=\dfrac{6}{y}\)
b) \(\dfrac{2x^2}{y}.3xy^2\)
\(=\dfrac{2x^2.3xy^2}{y}\)
\(=\dfrac{6x^3y^2}{y}\)
\(=6x^3y\)
c) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)
\(=\dfrac{15x.2y^2}{7y^3.x^2}\)
\(=\dfrac{30xy^2}{7x^2y^3}\)
\(=\dfrac{30}{7xy}\)
d) \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)
\(=\dfrac{2x^2.y}{\left(x-y\right).5x^3}\)
\(=\dfrac{2y}{5x\left(x-y\right)}\)
Giải các phương trình:
a) \(\dfrac{1}{x-2}\) + 3 = \(\dfrac{3-x}{x-2}\)
b) \(\dfrac{8-x}{x-7}\) - 8 = \(\dfrac{1}{x-7}\)
c) \(\dfrac{1}{x-1}\) + \(\dfrac{2x}{x^2+x+1}\) = \(\dfrac{3x^2}{x^3-1}\)
d) \(\dfrac{y+5}{y^2-5y}\) - \(\dfrac{y-5}{2y^2+10y}\) = \(\dfrac{y+25}{2y^2-50}\)
a) ĐKXD: x ≠ 2
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)
\(\Leftrightarrow-2+x=-3\left(x-2\right)\)
\(\Leftrightarrow-2+x=-3x+6\)
\(\Leftrightarrow x+3x=6+2\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)
Vậy S = ∅
b) ĐKXĐ: x ≠ 7
\(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)
\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)
\(\Leftrightarrow-1=8\left(vô-lý\right)\)
Vậy S = ∅
P/s: Ko chắc ạ!
c) ĐKXĐ: x ≠ 1
\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)
Quy đồng và khử mẫu ta được:
\(x^2+x+1+2x\left(x-1\right)=3x^2\)
\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)
\(\Leftrightarrow-x+1=0\)
\(\Leftrightarrow x=1\) (loại vì ko t/m đk)
Vậy S = ∅
Thực hiện phép tính
a, \(\dfrac{3}{x+3}-\dfrac{x-6}{x^2+3}\)
b, \(\dfrac{2x^2-x}{x-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\)
\(\dfrac{2x^2-x}{x-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}.\left(x\ne1\right).\)
\(\dfrac{2x^2-x-x-1+2-x^2}{x-1}=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1.\)
Thực hiện phép tính:
\(\dfrac{2\left(x+y\right)\left(x-y\right)}{x}-\dfrac{-2y^2}{x}\)
\(\dfrac{xy}{2x-y}-\dfrac{x^2-1}{y-2x}\)
\(\dfrac{4x-1}{3x^2y}-\dfrac{7x-1}{3x^2y}\)
a) \(A=\dfrac{2\left(x+y\right)\left(x-y\right)}{x}-\dfrac{-2y^2}{x}\)
\(A=\dfrac{2\left(x^2-y^2\right)+2y^2}{x}\)
\(A=\dfrac{2x^2-2y^2+2y^2}{x}\)
\(A=\dfrac{2x^2}{x}=2x\)
b) \(B=\dfrac{xy}{2x-y}-\dfrac{x^2-1}{y-2x}\)
\(B=\dfrac{xy}{2x-y}-\dfrac{1-x^2}{2x-y}\)
\(B=\dfrac{xy-1+x^2}{2x-y}\)
\(B=\dfrac{x^2+xy-1}{2x-y}\)
c) \(C=\dfrac{4x-1}{3x^2y}-\dfrac{7x-1}{3x^2y}\)
\(C=\dfrac{4x-1-7x+1}{3x^2y}\)
\(C=\dfrac{-3x}{3x^2y}\)
\(C=\dfrac{-1}{xy}\)
Thực hiện phép tính:
a) \(\dfrac{x+2y}{xy}\div\dfrac{x^2+4xy+4y^2}{2x^2}\)
b) \(\dfrac{4x^3-xy^2}{x^2+xy+y^2}\div\dfrac{\left(2x-y\right)^3}{x^3-y^3}\)
c) \(\dfrac{x+3}{x+2}\div\dfrac{3x+9}{2x-1}\div\dfrac{4x-2}{2x+4}\)
d) \(\dfrac{x+1}{x+2}\div\left(\dfrac{2x^2}{2x-3}\times\dfrac{3x+3}{4x^3}\right)\)
a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)
b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)
c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)
=1/3
d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)
\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)
5, Tìm x, y ϵ Z, sao cho:
a) y = \(\dfrac{6x-4}{2x+3}\) b) \(\dfrac{1}{x}-\dfrac{y}{2}=\dfrac{1}{4}\)
c) xy-3x+2y=5 d) (3x-5)(2x+1)=12
a) Để y nguyên thì \(6x-4⋮2x+3\)
\(\Leftrightarrow-13⋮2x+3\)
\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)
\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)
hay \(x\in\left\{-1;-2;5;-8\right\}\)
a) \(\dfrac{4x+1}{3x}+\dfrac{2x-3}{6x}\)
b)\(\dfrac{x^2-y^2}{6x^2y^2}:\dfrac{x+y}{3xy}\)
a) ĐKXĐ: \(x\ne0\)
\(\dfrac{4x+1}{3x}+\dfrac{2x-3}{6x}\)
\(=\dfrac{2\left(4x+1\right)+2x-3}{6x}\)
\(=\dfrac{10x-1}{6x}\)
b) ĐKXĐ: \(x,y\ne0\)
\(\dfrac{x^2-y^2}{6x^2y^2}:\dfrac{x+y}{3xy}\)
\(=\dfrac{\left(x-y\right).\left(x+y\right)}{6x^2y^2}.\dfrac{3xy}{x+y}\)
\(=\dfrac{x-y}{2xy}\)
a) Ta có: \(\dfrac{4x+1}{3x}+\dfrac{2x-3}{6x}\)
\(=\dfrac{2\left(4x+1\right)}{6x}+\dfrac{2x-3}{6x}\)
\(=\dfrac{8x+2+2x-3}{6x}\)
\(=\dfrac{10x-1}{6x}\)
b) Ta có: \(\dfrac{x^2-y^2}{6x^2y^2}:\dfrac{x+y}{3xy}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)}{6x^2y^2}\cdot\dfrac{3xy}{x+y}\)
\(=\dfrac{x-y}{2xy}\)