Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Tú Tài
Xem chi tiết
T.Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2022 lúc 22:43

1: AC=20cm

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{15\cdot20}{2}=150\left(cm^2\right)\)

2: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

3: Xét tứ giác AFDH có

AF//DH

AF=DH

Do đó: AFDH là hình bình hành

Jolie Nguyễn
Xem chi tiết
Nguyễn Ngọc Anh Minh
20 tháng 12 2023 lúc 15:02

A B C H D E K I

a/

Ta có

\(AB\perp AC\Rightarrow AD\perp AC;HE\perp AC\) => AD//HE

\(AC\perp AB\Rightarrow AE\perp AB,HD\perp AB\) => AE//HD

=> ADHE là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Mà \(\widehat{A}=90^o\) 

=> ADHE là hình CN

b/

Xét tg vuông ADH có

\(DH=\sqrt{AH^2-AD^2}\) (Pitago)

\(\Rightarrow DH=\sqrt{5^2-4^2}=3cm\)

\(\Rightarrow S_{ADHE}=AD.DH=4.3=12cm^2\)

c/

Ta có

DB=DI (gt); DH=DK (gt) => BKIH là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Xét tg AKH có

\(HD\perp AB\Rightarrow AD\perp HK\) (1)

BKIH là hình bình hành (cmt) => KI//BH (cạn đối hbh)

Mà \(AH\perp BC\left(gt\right)\Rightarrow BH\perp AH\)

\(\Rightarrow KI\perp AH\) (2)

Từ (1) và (2) => I là trực tâm của tg AKH => \(AK\perp HI\) (trong tg 3 đường cao đồng quy)

 

linh vũ
Xem chi tiết
Lê Thảo Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2023 lúc 23:47

a: ΔABC cân tại A có AH là phân giác

nên H là trung điểm của BC

ΔABC cân tại A có AH là trung tuyến

nên AH vuông góc BC

b: BH=CH=12/2=6cm

AH=căn AB^2-AH^2=8cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>AD=AE và HD=HE

=>ΔHDE cân tại H

d: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

Trúc Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2021 lúc 20:26

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

poi20102007
Xem chi tiết
Etermintrude💫
26 tháng 5 2021 lúc 7:34

undefined

poi20102007
Xem chi tiết
Thu Thao
26 tháng 5 2021 lúc 8:16

Dài lắm bạn tham khảo.undefinedundefined

dũng trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 0:07

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: Ta có: ADHE là hình chữ nhật

=>AD//HE và AD=HE

Ta có: AD//HE

F\(\in\)HE

Do đó: AD//HF

Ta có: AD=HE

HE=EF

Do đó: AD=EF

Xét tứ giác ADEF có

AD//EF

AD=EF

Do đó: ADEF là hình bình hành

c: ta có: AEHD là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{ABC}\left(=90^0-\widehat{ACB}\right)\)

nên \(\widehat{AED}=\widehat{ABC}\)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB=MC

Ta có: MA=MC

=>\(\widehat{MAC}=\widehat{MCA}\)

Ta có: \(\widehat{AED}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM\(\perp\)ED

mà ED//AF(ADEF là hình bình hành)

nên AM\(\perp\)AF

Nguyễn thị thúy Quỳnh
14 tháng 12 2023 lúc 21:10

a) Tứ giác ADHE là hình chữ nhật.

- Vì AD vuông góc với AB và HE vuông góc với AC (do HD và HE lần lượt là đường cao của tam giác ABC), nên ADHE là hình chữ nhật.

 

b) Lấy điểm F sao cho E là trung điểm của HF.

- Vì E là trung điểm của HF, nên EF = FH.

- Ta cũng có HE = EA (do E là trung điểm của HF và EA).

- Từ đó, ta có EF = FH = HE = EA.

- Vậy, tứ giác ADEF có các cạnh đối diện bằng nhau, là đặc điểm của hình bình hành.

 

c) Gọi M là trung điểm của BC. Chúng ta cần chứng minh AM vuông góc với AF.

- Ta biết rằng E là trung điểm của HF (theo phần b).

- Vì M là trung điểm của BC, nên BM = MC.

- Từ đó, ta có AM = BM = MC.

- Vì EF = FH = HE = EA (theo phần b), nên tứ giác ADEF là hình bình hành.

- Do đó, ta có AF song song với DE.

- Vì AM = MC và AF song song với DE, nên AM vuông góc với AF.

 

Vậy, ta đã chứng minh được AM vuông góc với AF.

Tiến Hoàng Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 1 2023 lúc 13:51

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE