Bài 2. Cho hình bình hành MNPQ có MN = 2MQ và M=120° . Gọi I,K lần lượt là trung điểm của MN,PQ. Lấy điểm A sao cho M là trung điểm của AQ. a) Tứ giác MIKQ là hình gì? Vì sao?
b) Chứng minh tam giác AMI đều.
c) chứng minh tứ giác APMN là hình chữ nhật
MN//PQ (cạnh đối hbh) => MI//KQ
Ta có
\(MI=\dfrac{MN}{2};KQ=\dfrac{PQ}{2}\) Mà MN=PQ (cạnh đối hbh) => MI=KQ
=> MIKQ là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
b/
Ta có
MA=MQ (gt) (1)
\(MN=2MQ\left(gt\right)\Rightarrow MQ=\dfrac{MN}{2}\) (2)
Ta có
\(MI=\dfrac{MN}{2}\) (3)
Từ (1) (2) (3) \(\Rightarrow MA=MI=\dfrac{MN}{2}\) => tg AMI cân tại M
Ta có
\(\widehat{AMI}=\widehat{AMP}-\widehat{M}=180^o-120^o=60^o\)
Xét tg AMI có
\(\widehat{MAI}+\widehat{MIA}+\widehat{AMI}=180^o\)
\(\Rightarrow\widehat{MAI}+\widehat{MIA}=180^o-\widehat{AMI}=180^o-60^o=120^o\)
Mà \(\widehat{MAI}=\widehat{MIA}\) (góc ở đáy tg cân)
\(\Rightarrow\widehat{MAI}=\widehat{MIA}=\dfrac{120^o}{2}=60^o\)
\(\Rightarrow\widehat{MAI}=\widehat{MIA}=\widehat{AMI}=60^o\Rightarrow\Delta AMI\) là tg đều
c/
Xét hbh MNPQ có
MQ//NP => MA//NP
MA=MQ (gt); MQ=NP (cạnh đối hbh)
=> MA=NP
=> APMN là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
Ta có
\(MI=AI=\dfrac{MN}{2}\) (cạnh tg đều)
\(NI=\dfrac{MN}{2}\)
\(\Rightarrow AI=NI=\dfrac{MN}{2}\) => tg AIN cân tại I
Ta có \(\widehat{AIN}=\widehat{MIN}-\widehat{AIM}=180^o-60^o=120^o\)
Xét tg cân AIN có
\(\widehat{AIN}+\widehat{IAN}+\widehat{INA}=180^o\)
\(\Rightarrow\widehat{IAN}+\widehat{INA}=180^o-\widehat{AIN}=180^o-120^o=60^o\)
Mà \(\widehat{IAN}=\widehat{INA}\) (góc ở đáy tg cân)
\(\Rightarrow\widehat{IAN}=\widehat{INA}=\dfrac{60^o}{2}=30^o\)
Xét tg AMN có
\(\widehat{MAN}+\widehat{AMI}+\widehat{INA}=180^o\)
\(\Rightarrow\widehat{MAN}=180^o-\widehat{AMI}-\widehat{INA}=180^o-60^o-30^o=90^o\)
=> APMN là hình chữ nhật (hình bình hành có 1 góc vuông là HCN
Cho hình bình hành MNPQ có MN=2MQ và góc M=120 độ. Gọi I,K lần lượt là tđ của MN,PQ và A là điểm đối xứng với Q qua M.
a)Tứ giác MIKQ là hình gì?
b)CM:tam giác AMI là tam giác đều
c)CM:AMPN là hình chữ nhật
Cho hình bình hành MNPQ có MN = 2MQ và góc M=120 độ . Gọi I, K lần lượt là trung điểm của
MN, PQ và A là điểm đối xứng của Q qua M.
a) Tứ giác MIKQ là hình gì? Vì sao?
b) Chứng minh tam giác AMI là tam giác đều;
c) Chứng minh tứ giác AMPN là hình chữ nhật.
giúp mình với các bạn ơi mình sẽ tick nhaaa
a, Ta cs : \(\hept{\begin{cases}MI//QK\\MI=QK\end{cases}}\)
=> Tứ giác MIKQ là hình bình hành
Ta lại cs : MI = MQ
=> Tứ giác MIKQ là hình thoi
Cho hình bình hành MNPQ có MN = 2MQ. Gọi H, K lần lượt là trung điểm của MN và PQ. a) Chứng minh tứ giác MHKQ là hình thoi. b) Gọi I là giao điểm của MK và QH, gọi A là giao điểm của HP và KN. Hỏi tứ giác HIKA là hình gì? Vì sao? c) Hình bình hành MNPQ nói trên có thêm điều kiện gì thi HIKA là hình vuông?
a: Xét tứ giác MHKQ có
MH//QK
MH=QK
Do đó: MHKQ là hình bình hành
mà MH=MQ
nên MHKQ là hình thoi
Cho hình bình hành MNPQ có MN = 2MQ và ∠M = 120o. Gọi I, K lần lượt là trung điểm của MN và PQ; A là điểm đối xứng của Q qua M.
a) Tứ giác MIKQ là hình gì? Vì sao?
b) C/m: ΔAMI là Δ đều.
c) C/m: tứ giác AMPN là hcn.
d) Cho AI = 4cm. Tính S của hcn AMPN.
a) Ta có: \(MI=IN=\dfrac{MN}{2}\)(I là trung điểm của MN)
\(QK=KP=\dfrac{QP}{2}\)(K là trung điểm của QP)
mà MN=QP(Hai cạnh đối trong hình bình hành MNPQ)
nên MI=IN=QK=KP
Ta có: \(MN=2\cdot MQ\)(gt)
mà \(MN=2\cdot MI\)(I là trung điểm của MN)
nên MQ=MI
Xét tứ giác MIKQ có
MI//QK(MN//QP,I\(\in\)MN, \(K\in QP\))
MI=QK(cmt)
Do đó: MIKQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành MIKQ có MI=MQ(cmt)
nên MIKQ là hình thoi(Dấu hiệu nhận biết hình thoi)
b) Ta có: \(\widehat{QMN}+\widehat{AMN}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{AMN}=180^0-\widehat{QMN}=180^0-120^0\)
hay \(\widehat{AMI}=60^0\)
Ta có: MI=MQ(cmt)
mà AM=MQ(M là trung điểm của AQ)
nên AM=MI
Xét ΔMAI có AM=MI(cmt)
nên ΔMAI cân tại M(Định nghĩa tam giác cân)
Xét ΔMAI cân tại M có \(\widehat{AMI}=60^0\)(cmt)
nên ΔMAI đều(Dấu hiệu nhận biết tam giác đều)
c) Ta có: AI=AM(ΔAMI đều)
mà \(AM=MQ\)(M là trung điểm của AQ)
nên AI=MQ
mà \(MQ=\dfrac{MN}{2}\)(gt)
nên \(AI=\dfrac{MN}{2}\)
Xét ΔAMN có
AI là đường trung tuyến ứng với cạnh MN(I là trung điểm của MN)
\(AI=\dfrac{MN}{2}\)(cmt)
Do đó: ΔAMN vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(\widehat{NAM}=90^0\)
Ta có: AM=MQ(M là trung điểm của AQ)
mà MQ=NP(Hai cạnh đối trong hình bình hành MNPQ)
nên AM=NP
Xét tứ giác AMPN có
AM//NP(MQ//NP, A\(\in\)MQ)
AM=NP(cmt)
Do đó: AMPN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AMPN có \(\widehat{NAM}=90^0\)(cmt)
nên AMPN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
cho hình bình hành MNPQ có MN = 2 PQ lấy K, H lần lượt là trung điểm MN , QP . Lấy J đối xứng Q qua M . chứng minh :
a , tứ giác MJNP là hình bình hành , từ đó suy ra J, K, P thẳng hàng
b , tứ giác MKHQ là hình thoi
c, góc QKP = 90 độ
cho hình bình hành MNPQ có MN=2MQ và góc M=120o . I,K lần lượt là TĐ của MN,PQ và A là điểm đối xứng của Q qua M
a/ MIKQ là hình gì? vì sao?
b/ Chứng minh tam giác AMI đều
c/ Chứng minh AMPN là hình chữ nhật
Cho tứ giác MNPQ. Gọi H, I, J, K lần lượt là trung điểm của MN, MP, PQ, QN. Tứ giác HKJI là hình gì? Vì sao? Tìm điều kiện để tứ giác MNPQ và tứ giác HKJI là hình thoi
Cho tứ giác MNPQ. Gọi H,I,J,K lần lượt là trung điểm của MN, MP,PQ,QN
a) Tứ giác HKJI là hình gì ? Vì sao
b) Tìm điều kiện để tứ giác MNPQ và tứ giác HKJI là hình thoi
a: Xét ΔMNP có
H là trung điểm của MN
I là trung điểm của MP
Do đó: HI là đường trung bình
=>HI//NP và HI=NP/2(1)
Xét ΔPQN có
J là trung điểm của PQ
K là trung điểm của QN
Do đó: JK là đường trung bình
=>JK//PN và JK=PN/2(2)
Từ (1) và (2) suy ra HI//KJ và HI=KJ
hay HKJI là hình bình hành
b: Để HKJI là hình thoi thì HJ⊥KI
hay MP⊥NQ
cho bình bình hành MNPQ có MN = 2MQ và góc M=120đô .Goi I K lần lươt là trung điểm của MN và PQ,A là điểm đối xứng của Q qua M
a) Tứ giác MIKQ là hình gì ?vì sao
b) Chứng minh tam giác AMI là tam giacs đêù
a)MIKQ hình gì?
Ta có MI//QK (MN//PQ)
MI=QK (1/2PQ)
⇒MIKQ là HBH
Có MQ=MI (gt)
Vậy MIKQ là hình thoi
b) C/M ΔAMI là tam giác đều
Ta có ∠QMI+∠AMI=180o (Q,M,A thẳng hàng)
Hay 120o+∠AMI=180o
⇒∠AMI=60o
Mà ΔAMI cân tại M (MA=MI)
Vậy ΔAMI đều