Tìm số nguyên tố p,q sao cho \(p^2+3pq+q^2\) là số chính phương
Bài 1:Cho n€N* thỏa mãn 5n+1 và 6n+7 là số chính phương. Hỏi 21n-19 là số nguyên tố hay hợp số
Bài 2: Tìm các số nguyên tố p,q biết p2 + 3pq+ q2 là số chính phương
Tìm các số nguyên tố p,q sao cho \(p^2+pq+q^2\)là số chính phương
Đặt \(p^2+pq+q^2=a^2\) \(\left(a\inℤ\right)\)
\(\Leftrightarrow\left(p+q\right)^2-pq=a^2\)
\(\Leftrightarrow\left(p+q\right)^2-a^2=pq\)
\(\Leftrightarrow\left(p+q-a\right)\left(p+q+a\right)=pq\)
Xong chắc xét các TH với p,q là số nguyên tố
1. Tìm p, q nguyên tố sao cho: \(p^q + q^p\) là số chính phương
2. Tìm a, b, c nguyên dương sao cho \(a^3 + b^3 = 2c^3\) và a + b + c là số nguyên tố
Tìm x,y là các số nguyên tố sao cho \(x^2+3xy+y^2\)là số chính phương
+, Nếu x,y đều khác 3
=> x và y đều ko chia hết cho 3
=> x^2 và y^2 đều chia 3 dư 1
=> x^2+y^2 chia 3 dư 2
Mà 3xy chia hết cho 3
=> x^2+3xy+y^2 chia 3 dư 2
=> x^2+3xy+y^2 ko phải số chính phương
=> trong 2 số x,y phải có ít nhất 1 số chia hết cho 3
Gia sử x chia hết cho 3
=> x=3
=> A = x^2+3xy+y^2 = 9+9y+y^2 = y^2+9y+9
Đặt A = k^2 ( k thuộc N )
<=> y^2+9y+9 = k^2
<=> 4y^2+36y+36 = (2k)2
<=> (2y+9)^2 - 45 = (2k)^2
<=> (2y+9)-(2k)^2 = 45
<=> (2y-2k+9).(2y+2k+9) = 45
Đến đó bạn tự làm nha nhưng nhớ kết quả gồm những hoán vị mà bạn tìm đc vì lúc đầu đã giả sử x chia hết cho 3
Tk mk nha
1. Chứng tỏ rằng với n \(\in\)N thìn+1 và 7n+4 là hai số nguyên tố cùng nhau.
2. Tìm n\(\in\)N thì 2n+1 và 4n+1 là hai số nguyên tố cùng nhau.
3. Tìm số nguyên tố p sao cho p+2 và p+4 đều là số nguyên tố.
4. Tìm số tự nhiên n sao cho \(n^2\)+3 là số chính phương.
cho các số nguyên tố p, q lớn hơn 3 sao p^2+q là số chính phương. CMR p^2+q chia hết cho 12
tìm các số nguyên tố p,q sao cho p2-q2-1laf một số chính phương
tìm các số nguyên tố p sao cho 2 số \(2\left(p+1\right)\)và \(2\left(p^2+1\right)\)là 2 số chính phương
Đặt \(\hept{\begin{cases}2\left(p+1\right)=4x^2\\2\left(p^2+1\right)=4y^2\end{cases}}\)
\(\Rightarrow2\left(x-y\right)\left(x+y\right)=p\left(p-1\right)\)
Làm nốt. Xét từ nhân tử VT chia hết cho từng nhân tử VP là xong
1: Tìm tất cả các nghiệm nguyên của phương trình: \(x^3-3xy=6y-1\)
2: Tìm các số nguyên tố x, y sao cho \(x^2+3xy+y^2\)là số chính phương