Chứng minh tam giác ABC là tam giác vuông trong các trường hợp sau
AB=3.x , AC=4.x , BC=5.x
Chứng minh tam giác ABC là tam giác vuông trong các trường hợp sau:
1) AB = 3x, AC = 4x, BC = 5x (x > 0).
2) AB/3 = AC/4 = BC/5
3) 20AB = 15AC = 12BC
Cho tam giác ABC vuông tại A,đường cao AH. Gọi M,N lần lượt là hình chiếu vuông góc của H lên AB và AC. a, biết AC bằng 16 cm, sinCAH=4/5. Tính độ dài các cạnh BC,AB và cosB b,chứng minh AM x AB = AN x AC và tam giác ABC đồng dạng với tam giác AMN. c, chứng minh MA x MB + NA × NC=HB×HC d, Chứng minh S AMN/ S ABC=sin²B×sin²C
b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
1. Cho ABC là tam giác vuông tại A. Tìm các tỉ số lượng giác của góc B trong các trường hợp sau:
a) BC = 5 cm; AB = 3 cm;
b) BC = 13 cm; AC = 12 cm;
c) BC = 5V2 cm; AB = 5 cm;
d) AB = a v3; AC = a.
d) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=\left(a\sqrt{3}\right)^2+a^2=4a^2\)
hay BC=2a
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{a}{2a}=\dfrac{1}{2}\)
\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{a\sqrt{3}}{2a}=\dfrac{\sqrt{3}}{2}\)
\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{a}{a\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)
\(\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)
1.Chứng minh rằng đa thức B(x) không có nghiệm, biết rằng: B(x)=x^2+5
2. Cho tam giác ABC vuông tại A ,đường phân giác BK(K €AC); kẻ KH vuông góc BC(H€BC), E là giao điểm của KH và AB.
Chứng minh: Tam giác ABC bằng tam giác HBKChứng minh: KB là đường trung trực của AHGọi I là trung điểm của EC. Chứng minh rằng: 3 điểm B,K,I thẳng hàng1. Ta có :
B(x)=x2+5 mà x2 luôn > hoặc = 0
và 5>0
=>x2+5 luôn > 0
Vậy đa thức B(x) không có nghiệm
Ta có : B ( x ) = x^2 + 5
Mà x^2 lớn hơn hoặc bằng 0
5 > 0
Suy ra x^2 + 5 > 0
Suy ra đa thức B ( x ) không có nghiệm
4)cho tam giác ABC vuông tại A, có B= 60* và AB=5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a)chứng minh: tam giác ABC= tam giác EBD
b)chứng minh:tam giác ABE là tam giác đều
c)tính độ dài cạnh BC
5)Tìm x biết: x-1/2011 + x-2/2010 - x-3/2009= x-4/2008
Bài 4:
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Xét ΔABE có BA=BE
nên ΔABE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔABE đều
c: Xét ΔABC vuông tại A có
\(\cos B=\dfrac{AB}{BC}\)
=>5/BC=1/2
hay BC=10(cm)
\(\Rightarrow\dfrac{x-1}{2011}-1+\dfrac{x-2}{2010}-1+\dfrac{x-3}{2009}-1=\dfrac{x-4}{2008}-1-2\)
\(\Rightarrow\dfrac{x-2012}{2011}+\dfrac{x-2012}{2010}+\dfrac{x-2012}{2009}=\dfrac{x-2012}{2008}-\dfrac{x-2012}{\left(x-2012\right)\div2}\)
\(\Rightarrow\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}-\dfrac{1}{2008}-\dfrac{1}{\left(x-2012\right)\div2}=0\)
Vì vế bên trên \(\ge0\)
\(x-2012=0\)
\(x=2012\)
Bài 1. Tam giác ABC và tam giác DEF trong các trường hợp sau có đồng dạng với nhau ko? Nếu có hãy kể tên các cặp góc bằng nhau.
a) AB = 4cm, BC = 6cm, AC = 5cm, DE = 10cm, DF = 12cm, EF = cm.
b) AB = 24cm, BC = 21cm, AC = 27cm, DE = 28cm, DF = 36cm, EF =32cm.
c) AB = DE = 12cm, AC = DF = 18cm, BC = 27cm, EF = 8cm.
d) AB/3 = BC/4 = AC/5 = k, DE/3 = EF/4 = DF/5 = h (k,h > 0)
Bài 2. Cho tam giác ABC, trọng tâm G. Gọi M,N,P lần lượt là trung điểm các đoạn thẳng AG,BG,CG.
a) Chứng minh tam giác MNP đồng dạng với tam giác ABC
b) Tính chu vi tam giác ABC biết chu vi tam giác MNP = 20cm.
bài1
a) EF=??
b) không đồng dạng
c) không đồng dạng
d) Đồng dạng (vì sao thì bạn nhắn cho mình nha)
các cặp góc bằng nhau ABC=DEF; BCA=EFD; CAB=FDE
bài 2
a) theo tính chất đường trung bình trong mỗi tam giác (không hiểu thì nhắn cho mình)
ta có MN=1/2AB => MN/AB=1/2 (1)
NM=1/2BC => NP/BC=1/2 (2)
MP=1/2AC => MP/AC=1/2 (3)
từ (1),(2),(3) => MNP đồng dạng với ABC
b) vì MNP đồng dạng với ABC với tỉ số k là 2 ( theo câu a)
nên chu vi ABC = 2 lần chu vi MNP =40cm
Chứng minh rằng tam giác \(ABC\) vuông trong các trường hợp sau:
a) \(AB = 8\)cm, \(AC = 15\)cm, \(BC = 17\)cm
b) \(AB = 29\)cm, \(AC = 21\)cm, \(BC = 20\)cm
c) \(AB = 12\)cm, \(AC = 37\), \(BC = 35\)cm
a) Ta có: \({8^2} + {15^2} = {17^2}\) suy ra \(A{B^2} + A{C^2} = B{C^2}\). Vậy tam giác \(ABC\) vuông tại \(A\)
b) Ta có: \({20^2} + {21^2} = {29^2}\) suy ra \(B{C^2} + A{C^2} = A{B^2}\). Vậy tam giác \(ABC\) vuông tại \(C\)
c) Ta có: \({12^2} + {35^2} = {37^2}\) suy ra \(A{B^2} + B{C^2} = A{C^2}\). Vậy tam giác \(ABC\) vuông tại \(B\)
Đề hình học là: cho tam giác ABC vuông tại A đường cao AH. AB= 3 AC=4 BC =5. Câu a chứng minh tam giác AHB đồng dạng với tam giác ABC. Câu b tính AH. Câu c chứng minh AB^2= BH×BC
a: Xét ΔAHB vuông tạiH và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
b: AH=3*4/5=2,4cm
c: ΔABC vuông tại A có HA là đường cao
nên AB^2=BH*BC
Cho tam giác ABC có AB=3, AC=4,BC=5 A, tam giác abc là tam giác gì? B, vẽ BD là phân giác góc B(D€AC) .Trên cạnh BC lấy điểm E sao cho AB=BE.Chứng minh AD =DE C, chứng minh AE vuông góc với BD
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: AD=DE
c: Ta có: BA=BE
nên B nằm trên đường trung trực của AE(1)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
hay BD⊥AE