Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Thị Hoài Linh
Xem chi tiết
Hoàng Thị Tâm
18 tháng 4 2016 lúc 22:10

Hàm số \(f\left(x\right)\) liên tục trên đoạn \(\left[\frac{1}{2};2\right]\)

+)\(f'\left(x\right)=\frac{x^2+2x}{\left(x+1\right)^2};f'\left(x\right)=0\Leftrightarrow x=0\notin\left[\frac{1}{2};2\right]\)hoặc \(x=-2\notin\left[\frac{1}{2};2\right]\)

+) \(f\left(\frac{1}{2}\right)=\frac{7}{6};f\left(2\right)=\frac{7}{3}\)

Vậy \(minf\left(x\right)_{x\in\left[\frac{1}{2};2\right]}=\frac{7}{6}\) khi \(x=\frac{1}{2}\)

       \(maxf\left(x\right)_{x\in\left[\frac{1}{2};2\right]}=\frac{7}{3}\) khi \(x=2\)

Nguyen Thi Bich Huong
Xem chi tiết
Nguyễn Linh Chi
16 tháng 4 2019 lúc 11:36

Câu hỏi của Nguyễn Bá Huy h - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

๖²⁴ʱƘ-ƔℌŤ༉
4 tháng 9 2019 lúc 10:02

\(f\left(x\right)=\frac{2x+1}{x^2\left(x+1\right)^2}=\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}\)

\(=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow f\left(1\right)=\frac{1}{1^2}-\frac{1}{2^2}\)

\(f\left(2\right)=\frac{1}{2^2}-\frac{1}{3^2}\)

\(f\left(3\right)=\frac{1}{3^2}-\frac{1}{4^2}\)

...

\(f\left(x\right)=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)

Lúc đó: \(f\left(1\right)+f\left(2\right)+f\left(3\right)+...+f\left(x\right)=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}\)

\(-\frac{1}{4^2}+...+\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}=1-\frac{1}{\left(x+1\right)^2}\)

Thay về đầu bài, ta được: \(1-\frac{1}{\left(x+1\right)^2}=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x\)

\(\Leftrightarrow1-\frac{1}{\left(x+1\right)^2}=2y\left(x+1\right)-\frac{1}{\left(x+1\right)^2}-19+x\)

\(\Leftrightarrow2y\left(x+1\right)+\left(x+1\right)=21\)

\(\Leftrightarrow\left(x+1\right)\left(2y+1\right)=21\)

\(\Rightarrow\hept{\begin{cases}x+1\\2y+1\end{cases}}\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Lập bảng:

\(x+1\)\(1\)\(3\)\(7\)\(21\)\(-1\)\(-3\)\(-7\)\(-21\)
\(2y+1\)\(21\)\(7\)\(3\)\(1\)\(-21\)\(-7\)\(-3\)\(-1\)
\(x\)\(0\)\(2\)\(6\)\(20\)\(-2\)\(-4\)\(-8\)\(-22\)
\(y\)\(10\)\(3\)\(1\)\(0\)\(-11\)\(-4\)\(-2\)\(-1\)

Mà \(x\ne0\)nên \(\left(x,y\right)\in\left\{\left(2,3\right);\left(6,1\right);\left(20,0\right);\left(-2,-11\right);\left(-4,-4\right);\left(-8,-2\right)\right\}\)\(\left(-22,-1\right)\)

Nga Nguyễn
Xem chi tiết
ngo mai trang
Xem chi tiết
nguyen thi khanh hoa
30 tháng 9 2015 lúc 13:17

ta tính \(y'=\frac{x\left(x-2\right)}{\left(x-1\right)^2}\)

giải pt y'=0

ta  có \(x\left(x-2\right)=0\) suy ra x=0 hoặc x=2

bảng bt

x y' y -2 0 1/2 2 0 0 + - -7/3 -1 -3/2

hàm số đạt giá trị lớn nhất =-1 tại x=0, đạt giá trị nhỏ nhất =-7/3 tại x=-2

Trương Đỗ Anh Quân
Xem chi tiết
Bạch Dạ Y
Xem chi tiết
Đoàn Đức Hà
7 tháng 7 2021 lúc 16:06

\(f\left(x\right)=3x+\frac{2}{\left(2x+1\right)^2}=\frac{3}{4}\left(2x+1\right)+\frac{3}{4}\left(2x+1\right)+\frac{2}{\left(2x+1\right)^2}-\frac{3}{2}\)

\(\ge3\sqrt[3]{\left[\frac{3}{4}\left(2x+1\right)\right]^2.\frac{2}{\left(2x+1\right)^2}}-\frac{3}{2}=\frac{3}{2}\sqrt[3]{9}-\frac{3}{2}\)

Dấu \(=\)khi \(\frac{3}{4}\left(2x+1\right)=\frac{2}{\left(2x+1\right)^2}\Leftrightarrow\left(2x+1\right)^3=\frac{8}{3}\Leftrightarrow x=\frac{1}{\sqrt[3]{3}}-\frac{1}{2}\).

Khách vãng lai đã xóa
Sakura
Xem chi tiết
Nguyễn Trung Thành
14 tháng 1 2020 lúc 21:32

tách x2+32 = (x2-4) +32

=) f(x) = (x+2)/4 + 9/(x-2) = [(x-2)/4 +9/(x-2)]  + 1 

cô si 2 số trong ngoặc vuông làm mất (X-2) là xong

Khách vãng lai đã xóa
nguyen thi mai huong
Xem chi tiết
1	Nguyễn Hoàng An
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 11 2021 lúc 15:36

\(f\left(x\right)=x+\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\ge2\sqrt{\dfrac{2\left(x-1\right)}{x-1}}+1=2\sqrt{2}+1\)

\(f\left(x\right)_{min}=2\sqrt{2}+1\)

Hermione Granger
1 tháng 11 2021 lúc 15:39

Ta có: \(f\left(x\right)=x+\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\)

Vì x > 1 nên x - 1 > 0 và \(\dfrac{2}{x-1}>0\)

Áp dụng bất đẳng thức cô-si cho hai số dương \(x-1;\dfrac{2}{x-1}\) ta được:

\(x-1+\dfrac{2}{x-1}\ge2.\sqrt{x-1.\dfrac{2}{x-1}}=2\sqrt{2}\)

\(=>f\left(x\right)=x-1+\dfrac{2}{x-1}+1\ge2\sqrt{2}+1\)

⇒ Giá trị bé nhất của f(x) là 2√2 + 1 .

Dấu “=” xảy ra khi và chỉ khi x - 1 = \(\dfrac{2}{x-1}\) và x > 1 ⇔ x = 1 + √2

\(f\left(x\right)=x\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\)