Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Meoww
Xem chi tiết
pham trung thanh
13 tháng 6 2018 lúc 8:29

Giả sử không có BĐT nào sai, ta có: 

\(4\left(b+d\right)>a^2+c^2\ge2ac\)

Mà \(ac\ge2\left(b+d\right)\)

\(\Rightarrow4\left(b+d\right)>4\left(b+d\right)\) Vô lí

=> có ít nhất 1 bđt sai

Lê Ng Hải Anh
13 tháng 6 2018 lúc 8:38

Ta có :\(ac\ge2\left(b+d\right)\)\(\Leftrightarrow2ac\ge4\left(b+d\right)\)(1)

Giả sử hai bất đẳng thức \(a^2< 4b;c^2< 4d\)đều đúng , cộng vế với vế hai bất đẳng thức trên ta đc

\(a^2+c^2< 4b+4d\Leftrightarrow a^2+c^2< 4\left(b+d\right)\)

Thay (1) vào bất đẳng thức trên ta đc:\(a^2+c^2< 2ac\)\(\Leftrightarrow\)\(a^2-2ac+c^2< 0\) 

                                                                                              \(\Leftrightarrow\)\(\left(a-c\right)^2< 0\)=> vô lí 

Vậy có ít nhất một trong 2 bất đẳng thức trên là sai.

giang vu
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Đặng Ngọc Quỳnh
1 tháng 1 2021 lúc 10:18

Đặt bđt là (*)

Để (*) đúng với mọi số thực dương a,b,c thỏa mãn :

\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)thì \(a=b=c=1\) cũng thỏa mãn (*)

\(\Rightarrow4\le\sqrt[n]{\left(n+2\right)^2}\)

Mặt khác: \(\sqrt[n]{\left(n+2\right)\left(n+2\right).1...1}\le\frac{2n+4+\left(n-2\right)}{n}=3+\frac{2}{n}\)

Hay \(n\le2\)

Với n=2 . Thay vào (*) : ta cần CM BĐT 

\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+c+a\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\le\frac{3}{16}\)

Với mọi số thực dương a,b,c thỏa mãn: \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vì: \(\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)

Tương tự ta có:

\(\frac{1}{\left(2b+a+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)};\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(c+b\right)}\)

Ta cần CM: 

\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{3}{16}\Leftrightarrow16\left(a+b+c\right)\le6\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Ta có BĐT: \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

Và: \(3\left(ab+cb+ac\right)\le3abc\left(a+b+c\right)\le\left(ab+cb+ca\right)^2\Rightarrow ab+bc+ca\ge3\)

=> đpcm

Dấu '=' xảy ra khi a=b=c

=> số nguyên dương lớn nhất : n=2( thỏa mãn)

Khách vãng lai đã xóa
Trang Huyen Trinh
Xem chi tiết
Phương Thảo Phan
Xem chi tiết
Trần Trà My
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 11 2021 lúc 14:11

BĐT cần c/m tương đương:

\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{4+2\left(ab+ac+ad+bc+bd+cd\right)}\)

\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{\left(a+b+c+d\right)^2}\)

\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\left(a+b+c+d\right)\)

\(\Leftrightarrow4\left(a^3+b^3+c^3+d^3\right)\ge4+3\left(a+b+c+d\right)\)

Dễ dàng chứng minh điều này bằng AM-GM:

\(a^3+a^3+1+b^3+b^3+1+c^3+c^3+1+d^3+d^3+1\ge3a^2+3b^2+3c^2+3d^2\)

\(\Rightarrow2\left(a^3+b^3+c^3+d^3\right)+4\ge12\)

\(\Rightarrow a^3+b^3+c^3+d^3\ge4\) (1)

Lại có:

\(a^2+b^2+c^2+d^2\ge\dfrac{1}{4}\left(a+b+c+d\right)^2\)

\(\Rightarrow a+b+c+d\le4\) (2)

(1);(2) \(\Rightarrow4\left(a^3+b^3+c^3+d^3\right)\ge16\ge4+3.4\ge4+3\left(a+b+c+d\right)\) (đpcm)

mai a
Xem chi tiết
Ninh Nguyễn Anh Ngọc
Xem chi tiết
Ninh Nguyễn Anh Ngọc
21 tháng 10 2016 lúc 12:59

ầy sai đề nha