Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 8 2019 lúc 9:31

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

f(x) = 1 ⇒ f′(x) = 0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 6 2019 lúc 2:11

f ′ ( x )   =   2   +   cos x   ≥   1 ,   x   ∈   R .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 6 2017 lúc 18:03

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

f(x) = 1 ⇒ f′(x) = 0

Sách Giáo Khoa
Xem chi tiết
ngonhuminh
15 tháng 4 2017 lúc 10:45

Lời giải (Giao lưu_cách làm cấp 2)

\(f'\left(x\right)=6x^8-6x^5+6x^2-6x+6=6\left(x^8-x^5+x^2-x+1\right)=6A\)

Cần c/m : \(A>\left(x^8-x^5+x^2-x+1\right)...với\forall x\in R\)

Nếu \(\left|x\right|\ge1\Rightarrow\left\{{}\begin{matrix}x^8\ge x^5\\x^2\ge x\end{matrix}\right.\) \(\Rightarrow A=\left(x^8-x^5\right)+\left(x^2-x\right)+1>0\Rightarrow A>0\)(1)

Nếu \(\left|x\right|< 1\Rightarrow\left\{{}\begin{matrix}x^2>x^5\\1>x\end{matrix}\right.\)\(\Rightarrow A=\left(x^2-x^5\right)+\left(1-x\right)+x^8>0\Rightarrow A>0\)(2)

Từ (1) và (2) \(\Rightarrow A>0\forall x\in R\)=> dpcm

Trần Thảo Nguyên
Xem chi tiết
Trần Khánh Vân
5 tháng 5 2016 lúc 15:03

Do  \(a+b=1\Rightarrow b=1-a\)

Suy ra : \(f\left(b\right)=f\left(1-a\right)=\frac{9^{1-a}}{9^{1-a}+3}=\frac{9}{9+3.9^a}=\frac{3}{3+9^a}\)

               \(\Rightarrow f\left(a\right)+f\left(b\right)=\frac{9^a}{9^a+3}+\frac{3}{3+9^a}=1\)

Thư Trần Nguyễn Anh
Xem chi tiết
ngonhuminh
23 tháng 3 2017 lúc 19:06

\(f'=6x^8-6x^5+6x+6=6\left(x^8-x^5+x+1\right)\)

\(\left[{}\begin{matrix}\left|x\right|\le1\Rightarrow\left|x^5-x\right|\le\left|x\right|\le1\Rightarrow1-x^5-x\ge0\\\left|x\right|\ge1\Rightarrow\left|x^5\right|\le x^8\Rightarrow\left\{{}\begin{matrix}x^8-x^5>0\\x^2-x>0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow f'\left(x\right)>0\forall x\)

Ngô Nhất Lan
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2022 lúc 14:35

a: f(x1)+f(x2)=a*x1+a*x2=a(x1+x2)

f(x1+x2)=a*(x1+x2)

=>f(x1)+f(x2)=f(x1+x2)

b: f(kx)=a*kx=ak*x

k*f(x)=k*ax=x*ka

=>f(kx)=k*f(x)

c: f(x1)*f(x2)=f(x1*x2)

=>ax1*ax2=a*(x1*x2)

=>a^2-a=0

=>a=1

trần manh kiên
Xem chi tiết
Cô Hoàng Huyền
28 tháng 12 2017 lúc 14:31

Giả sử phương trình f(x) = 0 có nghiệm nguyên x = a. Khi đó f(x) = (x - a).g(x)

Vậy thì f(0) = -a.g(x)   ; f(1) = (1 - a).g(x) ; f(2) = (2 - a).g(x);    f(3) = (3 - a).g(x) ; f(4) = (4 - a).g(x) ; 

Suy ra f(0).f(1).f(2).f(3).f(4) = -a.(1-a)(2-a)(3-a)(4-a).g5(x)

VT không chia hết cho 5 nhưng VP lại chia hết cho 5 (Vì -a.(1-a)(2-a)(3-a)(4-a) là tích 5 số nguyên liên tiếp nên chia hết cho 5)

Vậy giả sử vô lý hay phương trình f(x) = 0 không có nghiệm nguyên.

            

Duyên
Xem chi tiết