tìm x, y thuộc z biết x-y+2xy=7
tìm x,y thuộc z biết
x-2xy+y-3=0
Ta có: x-2xy+y-3=0
=>-2xy+x+y=3
=>-2.(-2xy+x+y)=-2.3
=>4xy-2x-2y=-6
=>4xy-2x-2y+1=-6+1
=>2x(2y-1)-(2y-1)=-5
=>(2y-1)(2x-1)=-5=1.(-5)=-5.1=(-1).5=5.(-1)
Ta có bảng sau:
2y-1 | 1 | -5 | -1 | 5 |
y | 1 | -2 | 0 | 3 |
2x-1 | -5 | 1 | 5 | -1 |
x | -2 | 1 | 3 | 0 |
Vậy (x;y) E {(1;-2);(-2;1);(3;0);(0;3)}
tìm x,y,z biết 2x^2+y^2-2xy+4x-2y=- 2(x,y,z thuộc Z+)
Tìm x,y thuộc Z biết x-y+2xy=3
<=> \(x=\frac{3-y}{1+2y}\)
Để x, y\(\in\)Z\(1+2y\in\text{Ư}_5\)hì \(\frac{3-y}{1+2y}\in Z\)
<=>\(3-y⋮1+2y\)
<=>\(-1-2y-5⋮1+2y\)
<=>\(1+2y\in\text{Ư}\)5
<=>\(1+2y\in\text{{}\text{ }1;-1;5;-5\)
<=>\(2y\in\text{{}0;-2;4;-6\)<=>\(y\in\text{{}0;-1;2;-3\)=>x=...
Ta thấy \(x-y+2xy=3\Rightarrow x\left(1+2y\right)=3+y\Rightarrow x=\frac{3+y}{1+2y}\)
\(x\in Z\Rightarrow2x\in Z\). Ta có \(2x=\frac{6+2y}{1+2y}=\frac{1+2y+5}{1+2y}=1+\frac{5}{1+2y}\)
\(\Rightarrow1+2y\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(y\in\left\{-3;-1;0;2\right\}\)
Với y = -3, \(x=0\)
Với y = -1, \(x=-2\)
Với y = 0, x = 3
Với y = 2, x = 1.
Tìm x, y thuộc Z biết x - y + 2xy = 6
https://hoc24.vn/cau-hoi/tim-xy-thuoc-z-thoa-man-x2-2xy-7x-y-2y2-10-0.216670050813
Tìm x,y thuộc Z,biết:
b) x - 2xy + 4y = 1
c) x + xy - 2y = 7
1. Tìm x,y thuộc Z biết 2xy - x + y - 2 = 0
\(2xy-x+y-2=0\)
\(\Leftrightarrow4xy-2x+2y-4=0\)
\(\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)-3=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2y-1\right)=3\)
\(\Rightarrow\left(2x+1\right)\left(2y-1\right)=1.3=3.1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)
Nếu \(2x+1=1\) thì \(2y-1=3\) \(\Rightarrow x=0\) thì \(y=2\)
Nếu \(2x+1=3\) thì \(2y-1=1\) \(\Rightarrow x=1\) thì y = \(1\)
Nếu \(2x+1=-1\) thì \(2y-1=-3\) \(\Rightarrow x=-1\) thì \(y=-1\)
Nếu \(2x+1=-3\) thì \(2y-1=-1\) \(\Rightarrow x=-2\) thì y = \(0\)
Vậy \(\left(x;y\right)=\left(-2;0\right);\left(-1;-1\right);\left(0;2\right);\left(1;1\right)\)
Tìm giá trị nguyên x nhỏ nhất thỏa mãn x - y + 2xy=7; x, y thuộc Z
Lời giải:
$x-y+2xy=7$
$(x+2xy)-y=7$
$x(1+2y)-y=7$
$2x(1+2y)-2y=14$
$2x(1+2y)-(2y+1)=13$
$(1+2y)(2x-1)=13$
Với $x,y$ nguyên thì $1+2y, 2x-1$ cũng là số nguyên. Mà $(2y+1)(2x-1)=13$ nên $2x-1, 2y+1$ là ước của $13$.
Để $x$ nhỏ nhất thì $2x-1$ là số nguyên nhỏ nhất sao cho $2x-1$ là ước của $13$
$\Rightarrow 2x-1=-13$
$\Rightarrow x=-6$
Tìm x,y thuộc z biết: x^2+4y^2-2xy=4