Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 10 2018 lúc 9:46

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 5 2017 lúc 8:26

Đáp án A

Giả sử giá trị lớn nhất của hàm số là M. Khi đó

 

  

có nghiệm

 

xét  

 

Suy ra  có 2 nghiệm phân biệt

  

Ta có

 

suy ra  

Yêu cầu bài toán

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 9 2019 lúc 4:35

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 11 2017 lúc 12:36

Chọn D

Điều kiện: x  ≠ m

Hàm số đã cho xác định trên [0;4] khi 

Ta có 

Hàm số đồng biến trên đoạn [0;4] nên 

Kết hợp với điều kiện (*) ta được m = -3. Do đó có một giá trị của m thỏa yêu cầu bài toán.

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
22 tháng 3 2021 lúc 6:13

b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)

\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 4 2017 lúc 4:19

Chọn B

Tập xác định D =  ℝ \{1}

Ta có 

Do đó hàm số nghịch biến trên đoạn [2;3]

Suy ra 

Vậy có 1 giá trị nguyên dương của m.

Shuu
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 7 2021 lúc 23:16

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)

NGUyễn Văn Dũng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 1 2017 lúc 6:22

Đáp án A