Cho hình lập phương A B C D . A ' B ' C ' D ' có cạnh bằng 2a. Thể tích khối trụ ngoại tiếp hình lập phương A B C D . A ' B ' C ' D ' bằng
A. 2 π a 3
B. π a 3 2
C. 8 π a 3 .
D. 4 π a 3 .
Cho hình lập phương A B C D . A ' B ' C ' D ' có cạnh bằng 2a. Thể tích khối trụ ngoại tiếp hình lập phương A B C D . A ' B ' C ' D ' bằng
A. 2 πa 3
B. πa 3 2
C. 8 πa 3
D. 4 πa 3
Cho hình lập phương ABCD.A'B'C'D'
có cạnh bằng 2a. Thể tích khối trụ
ngoại tiếp hình lập phương
ABCD.A'B'C'D' bằng
Cho khối lăng trụ đứng ABCD.A'B'C'D' có đáy là hình vương, cạnh đáy bằng \(2a\sqrt{2}\) và đường chéo AC'=5a. Tính thể tích khối lăng trụ đã cho
A. \(24a^3\) B. \(8a^3\) C.\(17\sqrt{2}a^3\) D.\(4a^3\)
\(AC=AB\sqrt{2}=4a\)
Áp dụng định lý Pitago:
\(CC'=\sqrt{\left(AC'\right)^2-AC^2}=3a\)
\(\Rightarrow V=3a.\left(2a\sqrt{2}\right)^2=24a^3\)
Một hình lập phương có cạnh bằng 2a vừa nội tiếp hình trụ (T) vừa nội tiếp mặt cầu (C) và hai đáy của hình lập phương nằm trên 2 đáy của hình trụ. Tính tỉ số thể tích V c V T giữa khối cầu và khối trụ giới hạn bởi (C) và (T) ?
Một hình lập phương có cạnh bằng 2a vừa nội tiếp hình trụ (T) vừa nội tiếp mặt cầu (C) và hai đáy của hình lập phương nằm trên 2 đáy của hình trụ. Tính tỉ số thể tích V C V T giữa khối cầu và khối trụ giới hạn bởi (C) và (T) ?
A. V C V T = 2 2
B. V C V T = 3
C. V C V T = 2
D. V C V T = 3 2
Đáp án là B.
+ Ta có: R C = a 3 ⇒ V C = 4 3 π .3 3 a 3 = 4 π a 3 3 .
+ R T = a 2 ⇒ V T = 2 a .. π 2 a 2 = 4 π a 3
Vậy V C V T = 3 .
Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng a. Tính diện tích xung quanh của hình trụ có hai đường tròn đáy ngoại tiếp hai hình vuông ABCD và A′B′C′D′.
A. S = πa 2 2 2
B. S = 2 πa 2
C. S = π 2 a 2
D. S = πa 2
Cho ABCD.A′B′C′D′ là hình lập phương cạnh 2a. Tính thể tích khối tứ diện ACD′B′ là
A. 8 a 3 3
B. 4 a 3 3
C. 2 a 3 3
D. 8 a 3 9
Đáp án C
Nhận thấy chóp ACD′B′ có tất cả các
cạnh bằng nhau và bằng 2 2 a
Gọi M là trung điểm của AC, G là
trọng tâm của tam giác AB′C′.
Chóp ACD′B′ nhận D′G là đường cao.
Xét tam giác AB′C′ có
Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng a. Khối nón đỉnh A, đáy là đường tròn đi qua ba điểm A′BD có thể tích bằng
A. 2 3 πa 3 27
B. 3 πa 3 8
C. 3 a 3 27
D. πa 3 6
Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy là hình vuông cạnh bằng 4cm, đường chéo AB′ của mặt bên (ABB′A′) có độ dài bằng 5cm. Tính thể tích V của khối lăng trụ ABCD.A′B′C′D′.
A. 48 cm 3
B. 24 cm 3
C. 16 cm 3
D. 32 cm 3