Tìm x,y biết \(\text{|}2x-6\text{|}+\text{|}5+y\text{|}\le0\)
Tìm x;y biết \(\text{|}x-3\text{|}^{2014}+\text{|}6+2y\text{|}^{2015}\le0\)
Ta có: \(\left|x-3\right|^{2014}\ge0;\left|6+2y\right|^{2015}\ge0\)
\(\Rightarrow\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\ge0\)
Mà theo đề: \(\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\le0\)
=> \(\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}=0\)
=> \(\left|x-3\right|=\left|6+2y\right|=0\)
=> \(x-3=6+2y=0\)
=> \(x=3;y=-3\).
Tìm x, y, z biết: \(\left|4\text{x}-3y\right|^{2017}+\left|5y-3\text{z}\right|^{2018}\le0\) và 2x-3y+z = 6
TÌm x;y biết \(-\text{|}2x+4\text{|}-\text{|}y+5\text{|}\ge0\)
\(\text{Ta có:}\left|2x+4\right|\ge0;\left|y+5\right|\ge0\)
Mà \(-\left|2x+4\right|-\left|y+5\right|\ge0\)
=> \(\left|2x+4\right|=\left|y+5\right|=0\)
=> \(2x+4=y+5=0\)
=> \(x=-2;y=-5\)
Tìm x, y, z biết
a) \(\text{x}^{\text{2}}+5\text{y}^{\text{2}}-4xy+6y+9=0\)b) \(2\text{x}^{\text{2}}+4\text{y}^{\text{2}}+\text{z}^{\text{2}}-4xy+4\text{y}^{\text{2}}-2x-2z+5=0 \)
b) \(2x^2+4y^2+z^2-4xy-2x-2z+5=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-2x+1\right)+\left(z^2-2z+1\right)+3=0\)
....
tìm x,y,z biết
a) \(\text{x}^{\text{2}}+5\text{y}^{\text{2}}-4xy+6y+9=0 \)
b) \(2\text{x}^{\text{2}}+4\text{y}^{\text{2}}+\text{z}^{\text{2}}-4xy+4\text{y}^{\text{2}}-2x+2z+5=0\)
a) \(x^2+5y^2-4xy+6y+9=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y=2.\left(-3\right)=-6\\y=-3\end{matrix}\right.\)
Vậy : \(\left(x,y\right)=\left(-6,-3\right)\)
Cho \(\dfrac{\text{x}}{\text{5}}=\dfrac{\text{y}}{\text{6}}\) . Tìm x,y biết
a) x+y= 44
b) 3x-y = 63
c) xy = 270
d) x . y = 120
a) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x+y}{5+6}=\dfrac{44}{11}=4\)
=> x = 4.5 = 20.
=> y = 4.6 = 24.
b) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{3x-y}{15-6}=\dfrac{63}{9}=7\)
=> x = 7.5 = 35.
=> y = 7.6 = 42.
c) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x.y}{5.6}=\dfrac{270}{30}=9\)
=> x = 9.5 = 45.
=> y = 9.6 = 54.
d) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x.y}{5.6}=\dfrac{120}{30}=4\)
=> x = 4.5 = 20.
=> y = 4.6 = 24.
câu c,d ở bạn trên làm sai rồi nhé
\(c,\) Đặt \(\dfrac{x}{5}=\dfrac{y}{6}=k\Rightarrow x=5k;y=6k\)
\(xy=270\Rightarrow30k^2=270\\ \Rightarrow k^2=9\Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=15;y=18\\x=-15;y=-18\end{matrix}\right.\)
\(d,\) Đặt \(\dfrac{x}{5}=\dfrac{y}{6}=k\Rightarrow x=5k;y=6k\)
\(xy=120\Rightarrow30k^2=120\\ \Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10;y=12\\x=-10;y=-12\end{matrix}\right.\)
Cho x + 3y - 2z = 36 . Tìm x,y,z biết :
a)\(\dfrac{\text{x-1}}{\text{3}}=\dfrac{\text{y+2}}{\text{4}}=\dfrac{\text{z-2}}{\text{3}}\)
b)\(\dfrac{\text{x}}{\text{4}}=\dfrac{\text{y}}{3};\dfrac{\text{y}}{\text{2}}=\dfrac{\text{z}}{\text{5}}\)
c) 9x = 5y ; 2x = z
d) 2x = 3y = 4z
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)
Do đó: x=18; y=12; z=9
a) Thay x + 3y - 2z vào biểu thức ta có:
\(\dfrac{x - 1}{3} = \dfrac{3(y + 2)}{3 . 4} = \dfrac{2(z - 2)}{2 . 3}\) = \(\dfrac{x - 1}{3} = \dfrac{3x + 6}{12} = \dfrac{2z - 4}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhua ta có:
\(\dfrac{x - 1}{3} = \dfrac{3y + 6}{12} = \dfrac{2z - 4}{6} = \dfrac{x - 1}{3}+ \dfrac{3y + 6}{12} -\dfrac{2z - 4}{6}\)
=\(\dfrac{x - 1 + 3y + 6 - 2z + 4}{3 + 12 -6} \) = \(\dfrac{(x + 3y - 2z) + ( -1 + 6 +4)}{3 + 12 - 6} \)
=\(\dfrac{36 + 9}{9}\) = 5
=> \(\dfrac{x - 1}{3} =\) 5 => x - 1 = 5.3 =15 => x = 5+1 = 6
=>
=>
Vậy ...
(Bạn dựa theo cách này và lm những bài tiếp nhé!)
Tìm x;y biết rằng : \(\text{|}x-5\text{|}+\text{|}1-x\text{|}=\frac{12}{\text{|}y+1\text{|}+3}\)
a, \(\text{[}\left(x-y\right)^3+3\left(x-y\right)\text{]}:\dfrac{1}{3}\left(x-y\right)\)
b, \(\left(8x^3-27y^3\right):\left(2x-3y\right)\)
c, \(\text{[}5\left(x+2y\right)^6-6\left(x+2y\right)^5\text{]}:2\left(x+2y\right)^4\)
a: \(=\left(x-y\right)^3:\dfrac{1}{3}\left(x-y\right)+3\left(x-y\right):\dfrac{1}{3}\left(x-y\right)\)
=3(x-y)^2+9
b: \(=\dfrac{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}{2x-3y}=4x^2+6xy+9y^2\)
c: \(=\dfrac{5\left(x+2y\right)^6}{2\left(x+2y\right)^4}-\dfrac{6\left(x+2y\right)^5}{2\left(x+2y\right)^4}=\dfrac{5}{2}\left(x+2y\right)^2-3\left(x+2y\right)\)