Cho tam giác ABC vuông góc tại A, phân giác BD. So sánh các độ dài BC và BD.
Cho tam giác ABC vuông góc tại A, phân giác BD. So sánh các độ dài AB và AD
+) Xét tam giác BDC có ∠D1 là góc ngoài tam giác tại đỉnh D nên:
∠D1 = ∠B2 + ∠C
Suy ra: ∠D1 > ∠B2 (góc ngoài của ΔBDC)
Mà ∠B1 = ∠B2 ( vì BD là tia phân giác của góc ABC ) nên ∠D1 > ∠B1 .
ΔABD có ∠D1 > ∠B1 nên AB > AD.
Cho tam giác ABC vuông tại A có AB=6cm, BC=10cm
a, tính độ dài AC và so sánh các góc của tam giác ABC
b,Vẽ đường phân giác BD của tam giác ABC và gọi E là hình chiếu của D trên BC.Chứng minh BD là đường trung trực của AE
c,Gọi giao điểm của hai đường thẳng ED và BA là F.M là trung điểm của FC.Chứng minh ba điểm B,D,M thẳng hàng
a: AC=căn 10^2-6^2=8cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE và DA=DE
=>BD là trung trực của AE
Cho tam giác ABC vuông tại A , tia phân giác BD của góc B ( \(D\in AC\)) . Lấy điểm E trên cạnh BC sao cho BE = BA .
a) So sánh độ dài các đoạn AD và DE .
b) So sánh góc EDC và góc ABC .
c) Chứng minh : AE vuông góc với BD .
a) Xét tam giác ABD và EBD có:
BA = BE (gt)
\(\widehat{ABD}=\widehat{EBD}\) (Do BD là tia phân giác góc B)
BD chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
\(\Rightarrow AD=ED\) (Hai cạnh tương ứng)
b) Do \(\Delta ABD=\Delta EBD\left(cmt\right)\Rightarrow\widehat{BED}=\widehat{BAD}=90^o\)
Xét tam giác vuông ABC ta có \(\widehat{ABC}=90^o-\widehat{ACB}\)
Xét tam giác vuông DEC ta có \(\widehat{EDC}=90^o-\widehat{ACB}\)
Vậy nên \(\widehat{EDC}=\widehat{ABC}\)
c) Gọi giao điểm của AE và BD là I.
Xét tam giác ABI và tam giác EBI có:
AB = EB (gt)
\(\widehat{ABI}=\widehat{EBI}\)
BD chung
\(\Rightarrow\Delta ABI=\Delta EBI\left(c-g-c\right)\)
\(\Rightarrow\widehat{AIB}=\widehat{EIB}\) (Hai góc tương ứng)
Mà chúng lại ở vị trí kề bù nên \(\widehat{AIB}=\widehat{EIB}=90^o\)
Vậy nên \(AE\perp BD\)
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
Câu hỏi là j vậy bn ?
what the hell??????
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
~~~Đây,các bạn giúp mk vs~~~
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
Bạn viết đề bài cho đầy đủ chứ -.-
~ Vào thông kê của bạn ý là thấy đề ~
Bài 5:
Bài làm
Xét tam giác ABC có:
AB < AC (gt)
=> \(\widehat{ABC}>\widehat{ACB}\)( Quan hệ giữa góc và cạnh đối diện ) (1)
Xét tam giác EBC vuông ở E có:
\(\widehat{ABC}+\widehat{ECB}=90^0\) (2)
Xét tam giác DBC vuông ở D có:
\(\widehat{ACB}+\widehat{DBC}=90^0\) (3)
Từ (1) , (2) và (3) => \(\widehat{ECB}< \widehat{DBC}\)
Xét tam giác HBC có:
\(\widehat{ECB}< \widehat{DBC}\) ( theo quan hệ giữa góc và cạnh đối diện có )
BH < HC
Vậy BH < HC
Bài 6
Bài làm:
Xét tam giác ABC có:
AB < AC ( gt )
\(\widehat{ABC}>\widehat{ACB}\)( quan hệ giữa góc và cạnh đối diện ) (1)
Mà BI là phân giác góc ABC
=> \(\frac{1}{2}\widehat{ABC}=\widehat{ABI}=\widehat{IBC}\) (2)
Và CI là phân giác góc ACB
=> \(\frac{1}{2}\widehat{ACB}=\widehat{ACI}=\widehat{ICB}\) (3)
Từ (1), (2) và (3) => \(\widehat{ABI}=\widehat{IBC}>\widehat{ACI}=\widehat{ICB}\) (4)
Xét tam giác IHB vuông ở H có:
\(\widehat{IBC}+\widehat{BIH}=90^0\) (5)
Xét tam giác IHC vuông ở H có:
\(\widehat{ICB}+\widehat{CIH}=90^0\) (6)
Từ (4), (5) và (6) => \(\widehat{BIH}< \widehat{CIH}\)
Xét tam giác IBC có:
\(\widehat{BIH}< \widehat{CIH}\)( Theo quan hệ giữa góc đối và cạnh đối diện có: )
BH < HC
Vậy BH < HC
# Học tốt #
cho tam giác ABC có GÓC a = 90 độ, tia phân giác BD của góc b ( D thuộc AC ). trên cạnh BC lấy điểm E sao cho BE = BA A) so sánh đọ dài các đoạn ada và de; so sánh góc edc và abc b) chứng minh AE vuông góc Bd (giúp với)
a) Xét tam gics BAD và BED ta có:
BD là cạnh chung (gt)
AB=AE (gt)
Góc ABD=góc DBC ( vid BD là phân giác của gốc B)
=> Tam giác BAD=tam gics BED (c.g.c)
=>AD=DE ( 2 cạnh tương ứng)
=> Tam giác BAD= tam giác BED
=> góc BAD=BED(2 góc tương ứng)
=>BED=BAD=90*
Xét tam giác ABC và EDC ta cosL'
BAC=DEC=90*
góc C chung
=> tam giác ABC~tam giác EDC (g-g)
=> goác ABC=EDC
b) Xét tam giác ABE ta có:
AB=BE
=> tam giác ABE cân tại B
mà BD là tia phân giác của góc B
=> BD là đường cao
=> BD vuông góc vs AE
phần 2 câu a bạn sai rồi
Giải
có góc abc + góc c =900(tam giác abc vuông tại a)
Mà góc edc + góc c =900(tam giác edc vuông tại d)
Vậy góc abc = góc edc
cho tam giác ABC có GÓC a = 90 độ, tia phân giác BD của góc b ( D thuộc AC ). trên cạnh BC lấy điểm E sao cho BE = BA A) so sánh đọ dài các đoạn ada và de; so sánh góc edc và abc b) chứng minh AE vuông góc Bd ( giúp với )
*Tự vẽ hình
a) Xét tam giác ABD và EBD có :
\(\widehat{ABD}=\widehat{DBE}\left(gt\right)\)
BD : cạnh chung
BA=BE(gt)
=> Tam giác ABD=EBD(c.g.c)
=> AD=DE
và \(\widehat{BAD}=\widehat{DEB}=90^o\)
\(\Rightarrow\widehat{BAD}=\widehat{DEC}=90^o\)
b) Gọi giao điểm của BD và AE là O
Tam giác ABO=EBO(c.g.c) (tự cm)
=> \(\widehat{BOA}=\widehat{BOE}\)
Mà : \(\widehat{BOA}+\widehat{BOE}=180^o\)
\(\Rightarrow\widehat{BOA}=90^o\)
\(\Rightarrow AE\perp BD\left(đccm\right)\)
#H
cho tam giác abc vuông tại a.Đường phân giác bd(d thuộc ac).từ d kẻ dh vuông góc với bc tại h.Đường thẳng dh cắt đường thẳng ab tại k a)chứng minh ad=hd b)so sánh độ dài ad và dc c)chứng minh bd vuông góc với kc
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: AD=DH
DH<DC
=>AD<DC
c: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại D
=>D là trực tâm
=>BD vuông góc KC
Cho tam giác ABC và biết góc A + C = 120 độ, góc A - C = 40 độ
a) So sánh các cạnh của tam giác ABC.
b) Tia phân giác của góc A cắt BC ở D. So sánh độ dài các đoạn BD và CD.