Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Thiên Long
Xem chi tiết
forever young
Xem chi tiết
Pha Lê Tuyết
Xem chi tiết
Mr Lazy
6 tháng 6 2015 lúc 18:29

Đặt \(a=x^2;b=y^2\left(a;b\ge0\right)\)

\(A=\frac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)

\(\left|A\right|=\frac{\left|\left(a-b\right)\left(1-ab\right)\right|}{\left(1+a\right)^2\left(1+b^2\right)}\le\frac{\left(a+b\right)\left(1+ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)

\(\left(1+a\right)\left(1+b\right)=\left(a+b\right)+\left(1+ab\right)\ge2\sqrt{\left(a+b\right)\left(1+ab\right)}\)

\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\ge4\left(a+b\right)\left(1+ab\right)\)

\(\Rightarrow\left|A\right|\le4\)

\(\Rightarrow-4\le A\le4\)

\(A=-4\Leftrightarrow a=0;b=1\Leftrightarrow x=0;y=+1or-1\)

\(A=4\Leftrightarrow a=1;b=0\Leftrightarrow x=+-1;y=0\)

Vậy \(MinA=-4;MaxA=4\)

Phạm Băng Băng
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 11 2019 lúc 10:15

\(x^4+2x^2y^2-3x^2+y^4-4y^2+4=1\)

\(\Leftrightarrow\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+4=1-x^2\)

\(\Leftrightarrow\left(x^2+y^2-2\right)^2=1-x^2\le1\)

\(\Rightarrow-1\le x^2+y^2-2\le1\)

\(\Rightarrow1\le x^2+y^2\le3\)

\(A_{min}=1\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)

\(A_{max}=0\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm\sqrt{3}\end{matrix}\right.\)

Khách vãng lai đã xóa
An Nhiên
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 8 2021 lúc 18:13

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

Phạm Băng Băng
Xem chi tiết
Phạm Minh Quang
22 tháng 10 2019 lúc 20:44

.

Khách vãng lai đã xóa
Phạm Băng Băng
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 10 2019 lúc 16:39

\(x^4+2x^2y^2+y^4-3x^2-4y^2+4=1\)

\(\Leftrightarrow\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+4=1-x^2\)

\(\Leftrightarrow\left(x^2+y^2-2\right)^2=1-x^2\)

Do \(1-x^2\le1\) \(\forall x\)

\(\Rightarrow-1\le x^2+y^2-2\le1\)

\(\Rightarrow1\le x^2+y^2\le3\)

\(A_{min}=1\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)

\(A_{max}=3\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm\sqrt{3}\end{matrix}\right.\)

Khách vãng lai đã xóa
vo thi minh nguyet
Xem chi tiết
Đỗ Ngọc Hải
6 tháng 6 2018 lúc 13:04

\(A=\frac{7\left(x+y\right)^2-9\left(x-y\right)^2}{2016\left(x^2+y^2\right)}=\frac{-2\left(x^2+y^2\right)+32xy }{2016\left(x^2+y^2\right)}=-\frac{1}{1008}+\frac{32xy}{2016\left(x^2+y^2\right)}\)
Áp dụng bđt cô si ta có:
\(xy\le\frac{x^2+y^2}{2}\)
\(\Rightarrow A\le-\frac{1}{1008}+\frac{16\left(x^2+y^2\right)}{2016\left(x^2+y^2\right)}=-\frac{1}{1008}+\frac{16}{2016}=\frac{1}{144}\)
Vậy maxA=1/144

GTNN để t nghĩ đã
 

Le Hong Phuc
6 tháng 6 2018 lúc 14:04

Đỗ Ngọc Hải làm đúng nhưng đó đâu phải bđt cô-si đâu. Bđt cô-si là \(\frac{x+y}{2}\ge\sqrt{xy}\) hay TBC>=TBN mà

Juvia Lockser
Xem chi tiết
kudo shinichi
9 tháng 12 2018 lúc 7:22

\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)

\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)

\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)

\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)

\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)

Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)

\(\Leftrightarrow A\ne0\forall x;y\)