tìm GTLN và GTNN của A=\(x^2+y^2\) biết \(x^2\left(x^2+2y^2-3\right)+\left(y^2-2\right)^2=1\)
1) Tìm GTNN của \(B=2\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-5\left(\frac{x}{y}+\frac{y}{x}\right)\\ \left(x,y>0\right)\)
2) Tìm GTLN và GTNN của \(C=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
tìm GTLN,GTNN của A=\(x^2+y^2\) biết \(x^2\left(x^2+2y^2-3\right)+\left(y^2-2\right)^2=1\)
tìm GTNN, GTLN của A= \(\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
Đặt \(a=x^2;b=y^2\left(a;b\ge0\right)\)
\(A=\frac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)
\(\left|A\right|=\frac{\left|\left(a-b\right)\left(1-ab\right)\right|}{\left(1+a\right)^2\left(1+b^2\right)}\le\frac{\left(a+b\right)\left(1+ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)
\(\left(1+a\right)\left(1+b\right)=\left(a+b\right)+\left(1+ab\right)\ge2\sqrt{\left(a+b\right)\left(1+ab\right)}\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\ge4\left(a+b\right)\left(1+ab\right)\)
\(\Rightarrow\left|A\right|\le4\)
\(\Rightarrow-4\le A\le4\)
\(A=-4\Leftrightarrow a=0;b=1\Leftrightarrow x=0;y=+1or-1\)
\(A=4\Leftrightarrow a=1;b=0\Leftrightarrow x=+-1;y=0\)
Vậy \(MinA=-4;MaxA=4\)
Tìm GTNN, GTLN của \(A=x^2+y^2\) , biết rằng:
\(x^2\left(x^2+2y^2-3\right)+\left(y^2-2\right)^2=1\)
\(x^4+2x^2y^2-3x^2+y^4-4y^2+4=1\)
\(\Leftrightarrow\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+4=1-x^2\)
\(\Leftrightarrow\left(x^2+y^2-2\right)^2=1-x^2\le1\)
\(\Rightarrow-1\le x^2+y^2-2\le1\)
\(\Rightarrow1\le x^2+y^2\le3\)
\(A_{min}=1\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)
\(A_{max}=0\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm\sqrt{3}\end{matrix}\right.\)
1. Tìm GTNN của \(y=x+\dfrac{1}{x}-5\) trên \(\left(0,+\infty\right)\)
2. Tìm GTNN của \(y=4x^2+\dfrac{1}{x}-4\) trên \(\left(0,+\infty\right)\)
3. Tìm GTLN của \(y=\dfrac{x^2+4}{x}\) trên \(\left(-\infty,0\right)\)
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
Tìm GTNN, GTLN của
\(A=x^2+y^2\) , bt rằng:
\(x^2\left(x^2+2y^2-3\right)+\left(y^2-2\right)^2=1\)
Timf GTNN,GTLN cua \(A=x^2+y^2\)
biet rang: \(x^2\left(x^2+2y^2-3\right)+\left(y^2-2\right)^2=1\)
\(x^4+2x^2y^2+y^4-3x^2-4y^2+4=1\)
\(\Leftrightarrow\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+4=1-x^2\)
\(\Leftrightarrow\left(x^2+y^2-2\right)^2=1-x^2\)
Do \(1-x^2\le1\) \(\forall x\)
\(\Rightarrow-1\le x^2+y^2-2\le1\)
\(\Rightarrow1\le x^2+y^2\le3\)
\(A_{min}=1\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)
\(A_{max}=3\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm\sqrt{3}\end{matrix}\right.\)
Tìm GTNN và GTLN của
A = \(\frac{7\left(x+y\right)^2-9\left(x-y\right)^2}{2016\left(x^2+y^2\right)}\)
\(A=\frac{7\left(x+y\right)^2-9\left(x-y\right)^2}{2016\left(x^2+y^2\right)}=\frac{-2\left(x^2+y^2\right)+32xy
}{2016\left(x^2+y^2\right)}=-\frac{1}{1008}+\frac{32xy}{2016\left(x^2+y^2\right)}\)
Áp dụng bđt cô si ta có:
\(xy\le\frac{x^2+y^2}{2}\)
\(\Rightarrow A\le-\frac{1}{1008}+\frac{16\left(x^2+y^2\right)}{2016\left(x^2+y^2\right)}=-\frac{1}{1008}+\frac{16}{2016}=\frac{1}{144}\)
Vậy maxA=1/144
GTNN để t nghĩ đã
Đỗ Ngọc Hải làm đúng nhưng đó đâu phải bđt cô-si đâu. Bđt cô-si là \(\frac{x+y}{2}\ge\sqrt{xy}\) hay TBC>=TBN mà
Cho biểu thức A= \(\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+x^2y^2+\frac{3}{4}\left(y+\frac{1}{3}\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a) Tìm đkxđ A
b) Chứng minh A không phụ thuộc vài x
c) Tìm GTNN của A
\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)
\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)
\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)
\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)
Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)
\(\Leftrightarrow A\ne0\forall x;y\)