Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Băng Băng

Timf GTNN,GTLN cua \(A=x^2+y^2\)

biet rang: \(x^2\left(x^2+2y^2-3\right)+\left(y^2-2\right)^2=1\)

Nguyễn Việt Lâm
24 tháng 10 2019 lúc 16:39

\(x^4+2x^2y^2+y^4-3x^2-4y^2+4=1\)

\(\Leftrightarrow\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+4=1-x^2\)

\(\Leftrightarrow\left(x^2+y^2-2\right)^2=1-x^2\)

Do \(1-x^2\le1\) \(\forall x\)

\(\Rightarrow-1\le x^2+y^2-2\le1\)

\(\Rightarrow1\le x^2+y^2\le3\)

\(A_{min}=1\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)

\(A_{max}=3\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm\sqrt{3}\end{matrix}\right.\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Phạm Băng Băng
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Wang Soo Yi
Xem chi tiết
bach nhac lam
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Cố Gắng Hơn Nữa
Xem chi tiết