Hàm số y = x 3 − 3 x 2 + 1 có điểm cực tiểu x C T là
A. x C T = 0
B. x C T = − 3
C. x C T = 1
D. x C T = 2
Hỏi hàm số y= f(x) = (x-1)(x-2)(x-3)...(x-2020) có
bao nhiêu điểm cực tiểu?
Cho hàm số \(y = f(x)\) xác định trên \(R\) có đạo hàm \(f'(x)=-(x+2)(x-1)^2(x-3)\)
Số điểm cực tiểu của hàm số \(f(x^2-2x)\) là?
\(f'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\) (chỉ quan tâm nghiệm bội lẻ)
\(g\left(x\right)=f\left(x^2-2x\right)\)
\(g'\left(x\right)=2\left(x-1\right)f'\left(x^2-2x\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\f'\left(x^2-2x\right)=0\end{matrix}\right.\)
\(f'\left(x^2-2x\right)=0\Rightarrow\left[{}\begin{matrix}x^2-2x=-2\\x^2-2x=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
BBT:
Từ BBT ta thấy \(f\left(x^2-2x\right)\) có 1 cực tiểu
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = ( 3 - x ) ( x 2 - 1 ) + 2 x , ∀ x ∈ R . Hỏi hàm số y = f ' ( x ) - x 2 - 1 có bao nhiêu điểm cực tiểu
A. 2
B. 3
C. 4
D. 1
a,Hàm số y = -2x + 1 không có cực trị.
Hàm số y = x/3 (x-3)2 đạt cực đại tại x = 1 và đạt cực tiểu tại x = 3.
a. Hàm số y = -2x + 1 có đồ thị là đường thẳng => Không có cực trị ( điều này hiển nhiên )
b) \(y=f\left(x\right)=\frac{x}{3}\left(x-3\right)^2\)
Có:
\(y'=f'\left(x\right)=\frac{1}{3}.\left(x-3\right)^2+\frac{x}{3}.2.\left(x-3\right)=\frac{1}{3}\left(x-3\right)\left(x-3+2x\right)=\left(x-3\right)\left(x-1\right)\)
\(f''\left(x\right)=x-1+x-3=2x-4\)
+) \(f'\left(x\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
+) Với x =3 có: \(f''\left(3\right)=2.3-4=2>0\)=> y = f ( x ) đạt cực tiểu tại x = 3.
+ Với x = 1 có: \(f''\left(1\right)=2.1-4=-1< 0\)=> y = f ( x ) đạt cực đại tại x =1
Còn có nhiều cách khác nữa: Vẽ đồ thị, vẽ bảng biến thiên,...
hay vải chưởng đè sai mà bn vẫn làm được
Cho hàm số y= mx^2 +2(m^2-5)x^4 +4 . Có bao nhiêu số nguyên m để hàm số có 3 điểm cực trị trong đó có đúng 2 điểm cực đại và 1 điểm cực tiểu.
Đề đúng là \(y=mx^2+2\left(m^2-5\right)x^4+4\) chứ bạn (nghĩa là ko bị nhầm lẫn vị trí \(x^2\) và \(x^4\))
Hàm có đúng 2 điểm cực đại và 1 điểm cực tiểu khi:
\(\left\{{}\begin{matrix}2\left(m^2-5\right)< 0\\2\left(m^2-5\right).m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \sqrt{5}\)
\(\Rightarrow\) có 2 giá trị nguyên của m thỏa mãn
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.
Cho hàm số y = - x 3 + 3 x 2 + 3 ( m 2 - 1 ) x - 3 m 2 - 1 . Có bao nhiêu giá trị nguyên của m để đồ thị hàm số có điểm cực đại và điểm cực tiểu nằm bên trái đường thẳng x=2
A. 3
B. 1
C. 2
D. 0
Cho hàm số y = f ( x ) = x 3 + a x 2 + b x + c đạt cực tiểu bằng – 3 tại điểm x=1 và đồ thị hàm số cắt trục tung tại điểm có tung độ là 2. Tính đạo hàm cấp một của hàm số tại x= -3
A. f'(-3)= 0
B. f'(-3)= 2
C. f'(-3)= 1
D. f'(-3)= -2
tìm m để đồ thị hàm số
1) \(y=mx^4+\left(m^2-9\right)x^2+10\) có 3 điểm cực trị
2) \(y=mx^4+\left(2m+1\right)x^2+1\) có một điểm cực tiểu
3) \(y=\left(m+1\right)x^4-mx^2+\dfrac{3}{2}\) chỉ có cực tiểu mà không có cực đại