Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Đinh Minh Đức
24 tháng 11 2021 lúc 21:16

thấy AMS là tớ bỏ của chạy lấy ng rồi

xin lỗi nhé

Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Đinh Minh Đức
24 tháng 11 2021 lúc 21:09

tớ xin hàng

thấy Ams thôi là bỏ của chạy lấy người rồi

Bảo Chu Văn An
25 tháng 11 2021 lúc 8:59

ờ...... mấy câu này thì tớ chịu :(

Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Nguyễn Trung Nguyên
17 tháng 11 2021 lúc 21:44

1, \(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}\)

 =>   \(\dfrac{a+b}{c}-1=\dfrac{a+c}{b}-1=\dfrac{b+c}{a}-1\)

 =>   \(\dfrac{a+b}{c}=\dfrac{a+c}{b}=\dfrac{b+c}{a}\)

=>    \(\dfrac{a+b}{c}=\dfrac{a+c}{b}=\dfrac{b+c}{a}=\dfrac{a+b+a+c+b+c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

=>  \(M=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{a+b}{c}\times\dfrac{a+c}{b}\times\dfrac{b+c}{a}=2.2.2=8\)

=>   \(M=8\)

Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Akai Haruma
18 tháng 11 2021 lúc 22:38

Bài 1:

Nếu $a+b+c=0$ thì đkđb thỏa mãn

$M=\frac{(-c)(-a)(-b)}{abc}=\frac{-(abc)}{abc}=-1$

Nếu $a+b+c\neq 0$. Áp dụng TCDTSBN:

$\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}=\frac{a+b-c+a+c-b+b+c-a}{c+b+a}=\frac{a+b+c}{a+b+c}=1$

$\Rightarrow a+b-c=c; a+c-b=b; b+c-a=a$

$\Leftrightarrow a+b=2c; a+c=2b; b+c=2a$

$\Rightarrow a=b=c$

$M=\frac{(a+a)(a+a)(a+a)}{aaa}=\frac{8a^3}{a^3}=8$

Akai Haruma
18 tháng 11 2021 lúc 22:41

Bài 2a

Đặt $2x=3y=4z=t$

$\Rightarrow x=\frac{t}{2}; y=\frac{t}{3}; z=\frac{t}{4}$

Khi đó:

$|x+y+3z|=1$

$\Leftrightarrow |\frac{t}{2}+\frac{t}{3}+\frac{3t}{4}|=1$

$\Leftrightarrow |\frac{19}{12}t|=1$

$\Rightarrow t=\pm \frac{12}{19}$

Nếu $t=\frac{12}{19}$ thì:

$x=\frac{t}{2}=\frac{6}{19}; y=\frac{4}{19}; z=\frac{3}{19}$

Nếu $t=-\frac{12}{19}$ thì:

$x=\frac{t}{2}=\frac{-6}{19}; y=\frac{-4}{19}; z=\frac{-3}{19}$

Akai Haruma
18 tháng 11 2021 lúc 22:58

Bài 2b:

$\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}$

$\Leftrightarrow (\frac{x}{2})^3=(\frac{y}{3})^3=(\frac{z}{4})^3$

$\Leftrightarrow \frac{x}{2}=\frac{y}{3}=\frac{z}{4}$

Đặt $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=t$

$\Rightarrow x=2t; y=3t; z=4t$

Khi đó:
$x^2+2y^2-3z^2=-650$

$\Leftrightarrow (2t)^2+2.(3t)^2-3(4t)^2=-650$

$\Leftrightarrow -26t^2=-650$

$\Leftrightarrow t=\pm 5$

Nếu $t=5$ thì:

$x=2t=10; y=3t=15; z=4t=20$

Nếu $t=-5$ thì:

$x=2t=-10; y=3t=-15; z=4t=-20$

Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 11 2021 lúc 20:34

Bài 1:

Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\Leftrightarrow M=\dfrac{-abc}{abc}=-1\)

Với \(a+b+c\ne0\Leftrightarrow\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\Leftrightarrow M=\dfrac{2a\cdot2b\cdot2c}{abc}=8\)

Bài 2:

\(a,TH_1:x+y+3z=1\\ \Leftrightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+3z}{6+4+9}=\dfrac{1}{19}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{6}{19}\\y=\dfrac{4}{19}\\z=\dfrac{3}{19}\end{matrix}\right.\\ TH_2:x+y+3z=-1\\ \Leftrightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+3z}{6+4+9}=\dfrac{-1}{19}\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{6}{19}\\y=-\dfrac{4}{19}\\z=-\dfrac{3}{19}\end{matrix}\right.\)

Nguyễn Hoàng Minh
17 tháng 11 2021 lúc 20:36

Bài 2:

\(b,\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Leftrightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=15\\z=20\end{matrix}\right.\)