Trong không gian với hệ tọa độ Oxyz mặt phẳng (P) đi qua điểm M − 1 ; 2 ; 0 và có vectơ pháp tuyến n → 4 ; 0 ; − 5 có phương trình là:
A. 4 x − 5 y + 4 = 0
B. 4 x − 5 y − 4 = 0
C. 4 x − 5 z + 4 = 0
D. 4 x − 5 z − 4 = 0
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) chứa trục Oy và đi qua điểm M(1;1;-1) có phương trình là
A. x + z =0
B. x - y =0
C. x - z =0
D. y + z =0
Đáp án A
Gọi N(0;1;0) là điểm thuộc trục Oy ⇒ M N → = ( - 1 ; 0 ; 1 )
Gọi ⇒ u → = ( 0 ; 1 ; 0 ) là một véc tơ chỉ phương của đường thẳng Oy.
là một véc tơ pháp tuyến của (P)
Suy ra phương trình mp(P) là
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng đi qua điểm M(1;1;1) và vuông góc với hai mặt phẳng (Oxy),(Ozx).
A. y-1=0.
B. x-1=0.
C. z-1=0.
D. x+z-2=0.
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2) và mặt phẳng (P): 2x-y+3z+1=0. Đường thẳng đi qua điểm M và vuông góc với mặt phẳng (P) có phương trình
A. x + 1 2 = y + 1 - 1 = z + 2 3
B. x + 2 1 = y - 1 1 = z + 3 2
C. x - 2 1 = y + 1 1 = z - 3 2
D. x - 1 2 = y - 1 - 1 = z - 2 3
Đáp án D
Vectơ chỉ phương của đường thẳng d là
Mà đường thẳng d qua M(1;1;2) nên phương trình d: x - 1 2 = y - 1 - 1 = z - 2 3
Trong không gian với hệ tọa độ Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua điểm M và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C không trùng với điểm gốc tọa độ sao cho M là trực tâm tam giác ABC. Trong các mặt phẳng sau, tìm mặt phẳng song song với mặt phẳng (P).
A. 3 x + 2 y + z + 14 = 0
B. 2 x + y + 3 z + 9 = 0
C. 3 x + 2 y + z - 14 = 0
D. 2 x + y + z - 9 = 0
Đáp án A.
Ta có A M ⊥ B C ⊥ O A ⇒ B C ⊥ O A M ⇒ B C ⊥ O M
Tương tự ta cũng có O M ⊥ A C ⇒ O M ⊥ P ⇒ P (P) nhận O M ¯ = 3 ; 2 ; 1 là vecto pháp tuyến.
Trong các đáp án, chọn đáp án mặt phẳng có vecto pháp tuyến có cùng giá với O M ¯ và không chứa điểm M thì thỏa.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) chứa trục Oy và đi qua điểm M(1;1-1) có phương trình là
A. x-z=0
B. y+z=0
C. x-y=0
D. x+z=0
Ta có: O M ⇀ ( 1 ; 1 ; - 1 ) ; j ⇀ ( 0 ; 1 ; 0 )
Mặt phẳng (P) chứa trục Oy và đi qua điểm M(1;1-1) có một VTPT là n ⇀ = O M ⇀ ; j ⇀ = 1 ; 0 ; 1
Phương trình (P) là: 1 ( x - 0 ) + 0 + 1 ( z - 0 ) = 0 ⇔ x + z = 0
Chọn đáp án D.
Trong không gian với hệ tọa độ Oxyz, cho điểm M 1 ; 1 ; 2 và mặt phẳng P : 2 x − y + 3 z + 1 = 0 . Đường thẳng đi qua điểm M và vuông góc với mặt phẳng (P) có phương trình:
A. x + 1 2 = y + 1 − 1 = z + 2 3 .
B. x + 2 1 = y − 1 1 = z + 3 2 .
C. x − 2 1 = y + 1 1 = z − 3 2 .
D. x − 1 2 = y − 1 − 1 = z − 2 3 .
Trong không gian với hệ tọa độ Oxyz cho điểm M(1;4;2) và mặt phẳng ( α ) : x + y + z - 1 = 0 . Tọa độ điểm M’ đối xứng với điểm M qua mặt phẳng (α) là
A. M’(0;-2;-3)
B. M’(-3;-2;0)
C. M’(-2;0;-3)
D. M’(-3;0;-2)
Trong không gian với hệ tọa độ Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C không trùng với gốc tọa độ sao cho M là trực tâm tam giác ABC. Trong các mặt phẳng sau, tìm mặt phẳng song song với mặt phẳng (P).
A. 3x+2y+z+14=0
B. 2x+y+3z+9=0
C. 3x+2y+z-14=0
D. 2x+y+z-9=0.
Chọn A
Gọi A(a;0;0);B(0;b;0);C(0;0;c)
Phương trình mặt phẳng (P) có dạng:
Vì M là trực tâm của tam giác ABC nên:
Khi đó phương trình (P): 3x+2y+z-14=0.
Vậy mặt phẳng song song với (P) là: 3x+2y+z+14=0.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( P ) : x + y – z – 4 = 0 và điểm M (1;–2;-2). Tọa độ điểm N đối xứng với điểm M qua mặt phẳng (P) là
A. N (3;4;8)
B. N (3;0;–4)
C. N (3;0;8)
D. N (3;4;–4)
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M(3;-4;7) và chứa trục Oz
A. ( P ) : 3 x + 4 z = 0 .
B. ( P ) : 4 x + 3 y = 0 .
C. ( P ) : 3 x + 4 y = 0 .
D. ( P ) : 4 y + 3 z = 0 .