Ta có: O M ⇀ ( 1 ; 1 ; - 1 ) ; j ⇀ ( 0 ; 1 ; 0 )
Mặt phẳng (P) chứa trục Oy và đi qua điểm M(1;1-1) có một VTPT là n ⇀ = O M ⇀ ; j ⇀ = 1 ; 0 ; 1
Phương trình (P) là: 1 ( x - 0 ) + 0 + 1 ( z - 0 ) = 0 ⇔ x + z = 0
Chọn đáp án D.
Ta có: O M ⇀ ( 1 ; 1 ; - 1 ) ; j ⇀ ( 0 ; 1 ; 0 )
Mặt phẳng (P) chứa trục Oy và đi qua điểm M(1;1-1) có một VTPT là n ⇀ = O M ⇀ ; j ⇀ = 1 ; 0 ; 1
Phương trình (P) là: 1 ( x - 0 ) + 0 + 1 ( z - 0 ) = 0 ⇔ x + z = 0
Chọn đáp án D.
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-1;1), mặt phẳng (P): x–2y+z-1=0 và đường thẳng d: x 1 = y - 2 2 = z + 1 - 1 . Viết phương trình đường thẳng đi qua A, song song với mặt phẳng (P) cắt đường thẳng d.
A. x - 1 1 = y + 1 1 = z - 1 1
B. x - 1 15 = y + 1 7 = z - 1 1
C. x - 1 4 = y + 1 1 = z - 1 - 2
D. x - 1 13 = y + 1 6 = z - 1 - 1
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm A(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q): x+y+3z=0, (R): 2x-y+z=0 là
A. 4x + 5y – 3z + 22 = 0.
B. 4x – 5y – 3z -12 =0
C. 2x + y – 3z – 14 = 0.
D. 4x + 5y – 3z – 22 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;-1;2) và mặt phẳng P : 2 x - y + z + 1 = 0 . Mặt phẳng (Q) đi qua điểm A và song song với (P) có phương trình là
A. Q : 2 x - y + z - 5 = 0
B. Q : 2 x - y + z = 0
C. Q : x + y + z - 2 = 0
D. Q : 2 x + y - z + 1 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(2;1;1) và mặt phẳng ( α ) : x + y + z - 4 = 0 và mặt cầu ( S ) : x 2 + y 2 + z 2 - 6 x - 6 y - 8 z + 18 = 0 . Phương trình đường thẳng d đi qua M và nằm trong mặt phẳng ( α ) cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất là
A. △ : x - 2 1 = y - 1 - 2 = z - 1 1
B. △ : x + 2 1 = y + 1 - 2 = z + 1 1
C. △ : x - 2 1 = y - 1 2 = z - 1 - 3
D. △ : x - 2 1 = y - 1 - 2 = z - 1 - 1
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2) Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x Ox, y Oy, z Oz lần lượt tại các điểm A, B, C sao cho O A = O B = O C ≠ 0 ?
A. 3
B. 1
C. 4
D. 8
Trong hệ trục tọa độ Oxyz, cho d là giao tuyến của hai mặt phẳng x - y + 2 z - 1 = 0 và 2 x - z + 3 = 0 . Mặt phẳng (P) đi qua d và vuông góc với mặt phẳng (Oyz) có phương trình là
A. -3y + 5z + 5 = 0
B. 2 y - 5 z + 5 = 0
C. -3y + 5z = 0
D. 2x - 5y + 5 = 0
Trong hệ trục tọa độ Oxyz, cho d là giao tuyến của hai mặt phẳng x − y + 2 z − 1 = 0 và 2 x − z + 3 = 0 . Mặt phẳng (P) đi qua d và vuông góc với mặt phẳng (Oyz) có phương trình là
A. − 3 y + 5 z = 0
B. 2 x − 5 y + 5 = 0
C. − 3 y + 5 z + 5 = 0
D. 2 y − 5 z + 5 = 0
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;-1;1), đường thẳng ∆ : x - 1 2 = y 1 = z + 1 - 1 và mặt phẳng (P): 2x-y+2z-1=0. Gọi (Q) là mặt phẳng chứa ∆ và khoảng cách từ A đến (Q) lớn nhất. Tính thể tích khối tứ diện tạo bởi ∆ và các trục tọa độ Ox, Oy, Oz.
A. 1/36
B. 1/6
C. 1/18
D. 1/2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P = x + y + z − 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z − 2 − 1 . Đường thẳng d ' đối xứng với d qua mặt phẳng (P) có phương trình là
A. x + 1 1 = y + 1 2 = z + 1 7
B. x + 1 1 = y + 1 − 2 = z + 1 7
C. x − 1 1 = y − 1 2 = z − 1 7
D. x − 1 1 = y − 1 − 2 = z − 1 7
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x + y + z + 1 = 0 và hai điểm A 1 ; - 1 ; 2 , B 2 ; 1 ; 1 . Mặt phẳng Q chứa A, B và vuông góc với mặt phẳng P . Mặt phẳng Q có phương trình là:
A. - x + y = 0
B. 3 x - 2 y - z + 3 = 0
C. x + y + z - 2 = 0
D. 3 x - 2 y - z - 3 = 0