Đáp án B
Hai mặt phẳng x - y + 2 z - 1 = 0 và 2 x - z + 3 = 0 . có VTPT lần lượt là
Gọi A là một điểm thuộc d tọa độ của A thỏa mãn HPT
Đáp án B
Hai mặt phẳng x - y + 2 z - 1 = 0 và 2 x - z + 3 = 0 . có VTPT lần lượt là
Gọi A là một điểm thuộc d tọa độ của A thỏa mãn HPT
Trong hệ trục tọa độ Oxyz, cho d là giao tuyến của hai mặt phẳng x − y + 2 z − 1 = 0 và 2 x − z + 3 = 0 . Mặt phẳng (P) đi qua d và vuông góc với mặt phẳng (Oyz) có phương trình là
A. − 3 y + 5 z = 0
B. 2 x − 5 y + 5 = 0
C. − 3 y + 5 z + 5 = 0
D. 2 y − 5 z + 5 = 0
Trong không gian với hệ tọa độ Oxyz, gọi d là giao tuyến của hai mặt phẳng có phương trình lần lượt là 2 x − 2 y − z = 0 và x + 3 y + z − 1 = 0 . Tính cosin của góc giữa đường thẳng d và trục Oy.
A. 3 35
B. 3 23
C. 3 74
D. 3 6
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(-1;-2;2), B(-3;-2;0) và mặt phẳng (P):x+3y-z+2=0. Vectơ chỉ phương của đường thẳng d là giao tuyến của mặt phẳng (P) và mặt phẳng trung trực của đoạn AB có tọa độ là
A. u → = 1 ; - 1 ; 0
B. u → = 2 ; 3 ; - 1
C. u → = 1 ; - 2 ; 0
D. u → = 3 ; - 2 ; - 3
Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng P , Q và R lần lượt có phương trình P : x + m y - z + 2 = 0 ; Q : m x - y + z + 1 = 0 và R : 3 x + y + 2 z + 5 = 0 . Gọi d m là giao tuyến của hai mặt phẳng P và Q . Tìm m ra để đường thẳng vuông góc với mặt phẳng R
A. m = 1 m = - 1 3
B. m = 1
C. m = - 1 3
D. Không có m
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;-2;0) và hai mặt phẳng P : x − 2 y + z − 1 = 0 , Q : 2 x + y − z + 5 = 0 . Mặt phẳng (R) đi qua M và đồng thời vuông
góc với cả hai mặt phẳng (P), (Q) có phương trình là?
A. R : x + 3 y + 5 z + 5 = 0.
B. R : x − 3 y + 5 z − 7 = 0.
C. R : 2 x − y − 4 z − 4 = 0.
D. R : 2 x + y − 4 z = 0.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x 1 = y - 1 2 = z + 2 2 mặt phẳng (P): 2x+y+2z-5=0 và điểm A(1; 1; -2) Phương trình chính tắc của đường thẳng ∆ đi qua A song song với mặt phẳng (P) và vuông góc với d là
A. ∆ : x - 1 1 = y - 1 2 = z + 2 - 2
B. ∆ : x - 1 2 = y - 1 1 = z + 2 - 2
C. ∆ : x - 1 2 = y - 1 2 = z + 2 - 3
D. ∆ : x - 1 1 = y - 2 2 = z + 2 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x - y - z + 1 = 0 và Q : 2 x + 3 y - z = 0 . Viết phương trình chính tắc của đường thẳng giao tuyến ∆ của hai mặt phẳng P và Q . Chọn khẳng định sai
A. x - 4 = y - 1 4 1 = z - 3 4 - 5
B. x + 3 5 4 = y - 2 5 - 1 = z 5
C. x 4 = y - 1 = z - 1 5
D. x - 1 4 = y - 1 = z - 2 5
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x–y+z -1= 0 và (Q):2x+y+1= 0. Viết phương trình mặt phẳng đi qua A(1;-1;-2) vuông góc với hai mặt phẳng (P) và (Q).
A. x+2y+3z+7=0.
B. x-2y+3z+3=0.
C. x+2y-3z–5=0.
D. x–2y–3z-9=0.
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ là giao tuyến của hai mặt phẳng P : z - 1 = 0 và Q : x + y + z - 3 = 0 . Gọi d là đường thẳng nằm trong mặt phẳng P , cắt đường thẳng x - 1 1 = y - 2 - 1 = z - 3 - 1 và vuông góc với đường thẳng . Phương trình của đường thẳng d là
A. x = 3 + t y = t z = 1 + t
B. x = 3 - t y = t z = 1
C. x = 3 + t y = t z = 1
D. x = 3 + t y = - t z = 1 + t