Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng P : 3 x + y + z − 5 = 0 và Q : x + 2 y + z − 4 = 0. Khi đó, giao tuyến của (P) và (Q) có phương trình là
A. d : x = t y = − 1 + 2 t z = 6 + t
B. d : x = t y = 1 − 2 t z = 6 − 5 t
C. d : x = 3 t y = − 1 + t z = 6 + t
D. d : x = t y = − 1 + 2 t z = 6 − 5 t
Trong không gian với hệ tọa độ Oxyz, điểm nào trong các điểm sau đây thuộc cả hai mặt phẳng ( P ) : x - 3 y - z + 4 = 0 và ( Q ) : 2 x - y + 2 z - 5 = 0 ?
A. (1;4;2)
B. (2;1;0)
C. (0;1;1)
D. (1;1;2)
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(2;1;1) và mặt phẳng ( α ) : x + y + z - 4 = 0 và mặt cầu ( S ) : x 2 + y 2 + z 2 - 6 x - 6 y - 8 z + 18 = 0 . Phương trình đường thẳng d đi qua M và nằm trong mặt phẳng ( α ) cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất là
A. △ : x - 2 1 = y - 1 - 2 = z - 1 1
B. △ : x + 2 1 = y + 1 - 2 = z + 1 1
C. △ : x - 2 1 = y - 1 2 = z - 1 - 3
D. △ : x - 2 1 = y - 1 - 2 = z - 1 - 1
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( P ) : x + y – z – 4 = 0 và điểm M (1;–2;-2). Tọa độ điểm N đối xứng với điểm M qua mặt phẳng (P) là
A. N (3;4;8)
B. N (3;0;–4)
C. N (3;0;8)
D. N (3;4;–4)
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):2x+y-z-1=0 và (Q):x-2y+z-5=0. Khi đó, giao tuyến của (P) và (Q) có một vectơ chỉ phương là:
A. u → = (1;3;5).
B. u → = (-1;3;-5).
C. u → = (2;1;-1).
D. u → = (1;-2;1).
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-y+6z+m=0 và cho đường thẳng d có phương trình x - 1 2 = y + 1 - 4 = z - 3 - 1 . Tìm m để d nằm trong (P).
A. m = –20.
B. m = 20
C. m = 0
D. m = –10
Trong không gian với hệ trục tọa độ Oxyz cho điểm A(2;0;-1) , mặt phẳng (P): 2x+y-z-2=0 và mặt phẳng (Q): x-3y-4=0. Gọi M là một điểm nằm trên (P) và N là điểm nằm trên (Q) sao cho A là trung điểm của MN. Khi M chạy trên mặt phẳng (P) thì quỹ tích điểm N là đường thẳng d có phương trình tương ứng là
Trong không gian với hệ tọa độ Oxyz cho điểm A(0;1;2) mặt phẳng α : x - y + z - 4 = 0 và S : x - 3 2 + y - 1 2 + z - 2 2 = 16 . Gọi (P) là mặt phẳng đi qua A vuông góc với α và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục xOx' là
A. M - 1 3 ; 0 ; 0
B. M 1 ; 0 ; 0
C. M - 1 2 ; 0 ; 0
D. M 1 3 ; 0 ; 0
Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d có phương trình x − 1 1 = y + 1 2 = z − 2 − 1 và mặt phẳng P : x + 2 y − 2 z + 4 = 0 . Tìm tọa độ điểm M trên d có tung độ dương sao cho khoảng cách từ M đến (P) bằng 2.
A. M 3 ; 3 ; 0
B. M 2 ; 1 ; 1
C. M 0 ; - 3 ; 3
D. M 1 ; - 1 ; 2
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x + 2 1 = y - 2 1 = z - 1 và mặt phẳng ( P ) : x + 2 y - 3 z + 4 = 0 . Đường thẳng d nằm trong (P) sao cho d cắt và vuông góc với ∆ có phương trình là:
A. x + 3 1 = y - 1 - 1 = z - 1 2
B. x + 1 - 1 = y - 3 2 = z + 1 1
C. x - 3 1 = y + 1 - 1 = z + 1 2
D. x + 3 - 1 = y - 1 2 = z - 1 1