Đáp án A
Gọi N(0;1;0) là điểm thuộc trục Oy ⇒ M N → = ( - 1 ; 0 ; 1 )
Gọi ⇒ u → = ( 0 ; 1 ; 0 ) là một véc tơ chỉ phương của đường thẳng Oy.
là một véc tơ pháp tuyến của (P)
Suy ra phương trình mp(P) là
Đáp án A
Gọi N(0;1;0) là điểm thuộc trục Oy ⇒ M N → = ( - 1 ; 0 ; 1 )
Gọi ⇒ u → = ( 0 ; 1 ; 0 ) là một véc tơ chỉ phương của đường thẳng Oy.
là một véc tơ pháp tuyến của (P)
Suy ra phương trình mp(P) là
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-y-z-1=0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 cho A(1;1;-2) Đường thẳng đi qua A, song song với (P) và vuông góc với d có phương trình là
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-1;1) mặt phẳng (P):x-2y+z-1=0 và đường thẳng d : x 1 = y - 2 2 = z - 1 - 1 . Viết phương trình đường thẳng đi qua A, song song với mặt phẳng (P) cắt đường thẳng d.
Trong không gian với hệ trục tọa độ Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q): x+y+3z=0, (R): 2x-y+z=0 là
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d: x - 1 2 = y + 1 1 = z - 3 2 và điểm A(0;-2;-2) Mặt phẳng (P) đi qua điểm A và vuông góc với đường thẳng d có phương trình là
A. 2x + y - 2z + 4 = 0
B. 2x + y + 2z - 4 = 0
C. 2x + y - 2z - 4 = 0
D. 2x + y + 2z + 4 = 0
Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) đi qua hai điểm A(0;1;0), B(2;3;1) và vuông góc với mặt phẳng (Q):x+2y-z=0 có phương trình là
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(2;1;1) và mặt phẳng ( α ) : x + y + z - 4 = 0 và mặt cầu ( S ) : x 2 + y 2 + z 2 - 6 x - 6 y - 8 z + 18 = 0 . Phương trình đường thẳng d đi qua M và nằm trong mặt phẳng α cắt mặt cầu α theo một đoạn thẳng có độ dài nhỏ nhất là:
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 3 1 = y - 3 3 = z 2 , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).
Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d : x - 3 1 = y - 3 3 = z 2 , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).
Trong hệ trục tọa độ Oxyz, cho d là giao tuyến của hai mặt phẳng x - y + 2z -1 = 0 và 2x - z + 3 = 0. Mặt phẳng (P) đi qua d và vuông góc với mặt phẳng (Oyz) có phương trình là
A. -3y + 5z + 5 = 0
B. 2y - 5z + 5 = 0
C. -3y + 5z = 0
D. 2x - 5y + 5 = 0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+y+z-7=0 và đường thẳng d : x - 3 - 2 = y + 8 4 = z - 1 . Phương trình mặt phẳng (Q) chứa d đồng thời vuông góc với mặt phẳng (P) là: