Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x + y - z - 2 = 0 và đường thẳng d : x + 1 2 = y - 1 1 = z - 2 1 Phương trình nào dưới đây là phương trình mặt phẳng chứa đường thẳng (d) và vuông góc với mặt phẳng α
A. x+y-z+2=0
B. 2x-3y-z+7=0
C. x+y+2z-4=0
D. 2x-3y-z-7=0
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng P : x + 2 y + z - 4 = 0 và đường thẳng d : x + 1 2 = y 1 = z + 2 3 .Viết phương trình đường thẳng ∆ nằm trong mặt phẳng P đồng thời cắt và vuông góc với đường thẳng d.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + 2y + z – 4 = 0 và đường thẳng d : x + 1 2 = y 1 = z + 2 3 Viết phương trình đường thẳng Δ nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d.
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng: ∆ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng ( P ) : x + 2 y + 2 z - 4 = 0 . Phương trình đường thẳng d nằm trong mặt phẳng (P) sao cho d cắt và vuông góc với đường thẳng Δ là
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 1 2 = y 1 = z + 1 3 và mặt phẳng (P): 2x+y-z=0. Mặt phẳng (Q) chứa đường thẳng d và vuông góc với mặt phẳng (P). Khoảng cách từ điểm O(0;0;0) đến mặt phẳng (Q) bằng
A. 1 3
B. 1 3
C. 1 5
D. 1 5
Trong không gian với hệ tọa độ Oxyz, cho A ( 1 ; - 1 ; 2 ) ; B ( 2 ; 1 ; 1 ) và mặt phẳng ( P ) : x + y + z + 1 = 0 . Mặt phẳng ( Q ) chứa A , B và vuông góc với mặt phẳng ( P ) . Mặt phẳng ( Q ) có phương trình là:
A. 3 x - 2 y - z - 3 = 0
B. x + y + z - 2 = 0
C. - x + y = 0
D. 3 x - 2 y - z + 3 = 0
Trong không gian với hệ tọa độ Oxyz cho A(1;-1;2), B(2;1;1) và mặt phẳng (P): x+y+z+1=0. Mặt phẳng (Q) chứa A, B và vuông góc với mặt phẳng . Mặt phẳng (Q) có phương trình là:
A. -x+y=0
B. 3x-2y-z+3=0
C. x+y+z-2=0
D. 3x-2y-z-3=0
Trong không gian với hệ tọa độ oxyz, cho mặt phẳng (P): x+y+z-3=0 và đường thẳng d : x - 2 1 = y + 1 - 2 = z - 1 . Gọi I là giao điểm của mặt phẳng (P) với đường thẳng d. Điểm M thuộc mặt phẳng (P) có hoành độ dương sao cho IM vuông góc với d và I M = 4 14 có tọa độ là:
Trong không gian hệ tọa độ Oxyz, cho đường thẳng Δ là giao tuyến của hai mặt phẳng (P): z-1= 0 và (Q): x+y+z-3 =0. Gọi d là đường thẳng nằm trong mặt phẳng (P), cắt đường thẳng: \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) và vuông góc với đường thẳng Δ. Phương trình đường thẳng d là?