Xen giữa số 3 và số 768 là 7 số để được một cấp số nhân có u 1 = 3. Khi đó u 5 là:
A. 72
B. -48
C. ± 48
D. 48
Xem giữa số 3 và số 768 là 7 số để được một cấp số nhân có u 1 = 3 . Khi đó u 5 bằng:
A. 72
B. -48
C. ± 48
D. 48
Xem giữa số 3 và số 768 là 7 số để được một cấp số nhân có u 1 = 3 . Khi đó u 5 bằng:
A. 72
B. -48
C. ± 48
D. 48
Chọn đáp án D.
Ta có: u 1 = 3 v à u 9 = 768 nên 768 = 3 . q 8
Do đó u 5 = u 1 . q 4 = 48 .
Bốn số xen giữa các số 1 và – 234 để được một cấp số nhân có 6 số hạng là:
A. -2;4;-8;16
B. 2;4;8;16
C. 3;9;27;81
D. -3;9;-17;81
Đáp án D
Xét cấp số nhân u n : u 1 = 1 u 6 = − 243 với công bội là q.
Ta có u 6 = u 1 . q 5 ⇔ q 5 = − 243 ⇒ q = − 3
Vậy bốn số hạng đó là −3; 9; −27; 81.
Viết bốn số xen giữa các số 5 và 160 để được một cấp số nhân.
Viết bốn số xen giữa các số 5 và 160 để được một cấp số nhân ?
Đặt \(u_a=5;u_{a+1};u_{a+2};u_{a+3};u_{a+4};u_{a+5}=160\) với \(u_{a+1};u_{a+2};u_{a+3};u_{a+4}\) là bốn số hạng cần tìm.
Ta có: \(u_{a+5}=u_a.q^5\).
Vì vậy: \(\dfrac{u_{a+5}}{u_a}=q^5=\dfrac{160}{5}=32=2^5\).
Suy ra: \(q=2\).
Suy ra: \(u_{a+1}=u_a.2=5.2=10\); \(u_{a+2}=u_a.2^2=5.4=20\);
\(u_{a+3}=u_a.2^3=5.8=40\); \(u_{a+4}=u_a.2^4=5.16=90\).
Vậy bốn số hạng đó là: \(10;20;40;80\).
Xen vào giữa hai số 4 và 40 bốn số để được một cấp số cộng có công sai lớn hơn 3. Tìm tổng 4 số đó.
A. 88
B. 92
C. 128
D. 132
Chọn A
Nếu xen 4 số vào giữa hai số để được một cấp số cộng thì cấp số cộng đó có 6 số hạng.
Theo đầu bài
Ta có: u 1 = 4 ; u 6 = 40
⇒ 40 = 4 + 5. d ⇒ d = 7 , 2
Vậy 4 số thêm vào là:11,2; 18,4; 25,6; 32,8
Viết ba số xen giữa các số 2 và 22 để được cấp số cộng có 5 số hạng.
Tính tổng của ba số viết xen giữa đó ?
A. 36.
B. 30
C.39
D. 34
Chọn A
Theo giả thiết ta có: u 1 = 2 u 5 = 22
Mà u5 = u1 + 4d nên 22 = 2 + 4d
⇒ 20 = 4 d ⇔ d = 5
⇒ u 2 = 2 + 5 = 7 u 3 = 2 + 2.5 = 12 u 4 = 2 + 3.5 = 17
Vậy tổng ba số viết xen giữa là: 7 +12 +17 = 36
Bài 1: Khi cộng 1 số tự nhiên với 107, 1 học sinh đã chép nhầm số hạng thứ 2 thành 1007 nên được kết quả là 1996. Tìm tổng đúng của 2 số đó. |
Bài 1: Khi cộng 1 số tự nhiên với 107, 1 học sinh đã chép nhầm số hạng thứ 2 thành 1007 nên được kết quả là 1996. Tìm tổng đúng của 2 số đó.
Bài 2: Khi nhân 1 số tự nhiên với 5 423, 1 học sinh đã đặt các tích riêng thẳng cột với nhau như trong phép cộng nên được kết quả là 27 944. Tìm tích đúng của phép nhân đó.
Bài 3: Khi chia 1 số tự nhiên cho 101, 1 học sinh đã đổi chỗ chữ số hàng trăm và hàng đơn vị của số bị chia, nên nhận được thương là 65 và dư 100. Tìm thương và số dư của phép chia đó.
Bài 4: Cho 2 số, nếu lấy số lớn chia cho số nhỏ được thương là 7 và số dư lớn nhất có thể có được là 48. Tìm 2 số đó.
Bài 5: Hai số thập phân có tổng là 15,88. Nếu dời dấu phẩy của số bé sang phải 1 hàng, rồi trừ đi số lớn thì được 0,12. Tìm 2 số đó.
Bài 6: Một phép chia có thương là 6 và số dư là 3. Tổng của số bị chia, số chia và số dư bằng 195. Tìm số bị chia và số chia.
Bài 7: Tổng của 2 số thập phân là 16,26. Nếu ta tăng số thứ nhất lên 5 lần và số thứ hai lên 2 lần thì được 2 số có tổng là 43,2. Tìm 2 số.
Bài 8: So sánh tích: 1,993 x 199,9 với tích 19,96 x 19,96
Bài 9: Một học sinh khi nhân 1 số với 207 đã quên mất chữ số 0 của số 207 nên kết quả so với tích đúng giảm 6 120 đơn vị. Tìm thừa số đó.
Bài 10: Lấy 1 số đem chia cho 72 thì được số dư là 28. Cũng số đó đem chia cho 75 thì được số dư là 7 thương của 2 phép chia là như nhau. Hãy tìm số đó.