Phương trình mặt phẳng đi qua điểm A(1;1;1) và vuông góc với hai mặt phẳng ( P ) : x + y - z - 2 = 0 , ( Q ) : x - y + z - 1 = 0 là
A. x + y + z - 3 = 0
B. x - 2y + z = 0
C. x + z - 2 = 0
D. x + y - 2 = 0
Trong không gian Oxyz, cho điểm A(1; 2; -1), đường thẳng d có phương trình x - 3 1 = y - 3 3 = z 2
và mặt phẳng (a) có phương trình x + y - z + 3 = 0 . Đường thẳng D đi qua điểm A , cắt d và song song với mặt phẳng (a) có phương trình là
A. x - 1 1 = y - 2 - 2 = z + 1 - 1
B. x - 1 1 = y - 2 2 = z + 1 1
C. x - 1 1 = y - 2 2 = z - 1 1
D. x - 1 - 1 = y - 2 - 2 = z + 1 1
Cho A(1,2,-3), B(3,0,1) , denta :\(\left\{{}\begin{matrix}x=-1+2t\\y=2-t\\z=t\end{matrix}\right.\)
(P): x+y+z-3=0
a) Lập phương trình mặt phẳng (Q) đi qua điểm A và chứa đường thẳng denta
b) Lập phương trình mặt phẳng (Q) đi qua điểm A và song song với đường thẳng denta và vuông góc với mặt phẳng (P)
c) Lập phương trình đường thẳng d nằm trên mặt phẳng (P) cắt và vuông góc với denta
d) Lập phương trình đường thẳng d đi qua điểm A cắt denta tại M, cắt mặt phẳng (P) tại N sao cho M là trung điểm AN
a.
Chọn \(C\left(1;1;1\right)\) là 1 điểm thuộc denta
\(\Rightarrow\overrightarrow{AC}=\left(0;-1;4\right)\)
Đường thẳng denta có \(\overrightarrow{u_{\Delta}}=\left(2;-1;1\right)\) là 1 vtcp
\(\Rightarrow\left[\overrightarrow{AC};\overrightarrow{u_{\Delta}}\right]=\left(3;8;2\right)\)
\(\Rightarrow\left(Q\right)\) nhận \(\left(3;8;2\right)\) là 1 vtpt
Phương trình (Q):
\(3\left(x-1\right)+8\left(y-2\right)+2\left(y+3\right)=0\)
b.
Mặt phẳng (P) nhận \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) là 1 vtpt
Ta có: \(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_{\left(P\right)}}\right]=\left(-2;-1;3\right)\)
Mặt phẳng (Q) nhận (2;1;-3) là 1 vtpt
Phương trình (Q):
\(2\left(x-1\right)+1\left(y-2\right)-3\left(z+3\right)=0\)
c.
Gọi M là giao điểm denta và (P) thì tọa độ M thỏa:
\(-1+2t+2-t+t-3=0\Rightarrow t=1\)
\(\Rightarrow M\left(1;1;1\right)\)
\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_{\Delta}}\right]=\left(2;1;-3\right)\)
Đường thẳng d nhận (2;1;-3) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=1+t\\z=1-3t\end{matrix}\right.\)
d.
Do M thuộc denta nên tọa độ có dạng: \(M\left(-1+2t;2-t;t\right)\)
M là trung điểm AN \(\Rightarrow N\left(-3+4t;2-2t;2t+3\right)\)
N thuộc (P) nên: \(-3+4t+2-2t+2t+3-3=0\Rightarrow t=\dfrac{1}{4}\)
\(\Rightarrow\overrightarrow{MN}=\left(-2+2t;-t;t+3\right)=\left(-\dfrac{3}{2};-\dfrac{1}{4};\dfrac{13}{4}\right)=-\dfrac{1}{4}\left(6;1;13\right)\)
Phương trình d: \(\left\{{}\begin{matrix}x=1+6t\\y=2+t\\z=-3+13t\end{matrix}\right.\)
Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua điểm A(2 ;-1 ;3) và song song với mặt phẳng (Q):
A.
B. x - 2y + 3z - 15 = 0
C. 3x - 6y + 2z - 18 = 0
D. 3x - 6y + 2z + 18 = 0
Đáp án C
Phương trình mặt phẳng (Q) viết lại dưới dạng: 3x - 6y + 2z - 6 = 0
Suy ra đáp án B sai. Trong ba đáp án còn lại chỉ có mặt phẳng ở đáp án C đi qua điểm A.
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-1;2) và mặt phẳng (P): 2x-y+z+1=0. Mặt phẳng (Q) đi qua điểm A và song song với (P). Phương trình mặt phẳng (Q) là:
Mặt phẳng (P) đi qua hai điểm A(1;1;2), B(-4;2;1) và vuông góc với mặt phẳng (Q): 2x - 5y + 1 = 0 có phương trình là
A.
B.
C.
D.
Trong không gian Oxyz, cho điểm A(3;5;2). Phương trình đường thẳng nào dưới đây là phương trình của mặt phẳng đi qua các điểm là hình chiếu của điểm A trên các mặt phẳng tọa độ?
A. 10x+6y+15z-90= 0
B. 10x+6y+15z-60= 0
C.3x+5y+2z-60= 0
D. x 3 + y 5 + z 2 = 1
Viết phương trình mặt phẳng đi qua điểm A(1;1;1) và vuông góc với hai mặt phẳng x+y-z-2=0, x-y+z-1=0
A. x+y+z-3=0
B. y+z-2=0
C. x+z-2=0
D. x-2y+z=0
Lập phương trình mặt phẳng ( α ) đi qua hai điểm A(0; 1; 0) , B(2; 3; 1) và vuông góc với mặt phẳng ( β ): x + 2y – z = 0 .
Mặt phẳng ( α ) đi qua hai điểm A, B và vuông góc với mặt phẳng ( β ): x + 2y – z = 0.
Vậy hai vecto có giá song song hoặc nằm trên ( α ) là AB → = (2; 2; 1) và n β → = (1; 2; −1).
Suy ra ( α ) có vecto pháp tuyến là: n α → = (−4; 3; 2)
Vậy phương trình của ( α ) là: -4x + 3(y – 1) + 2z = 0 hay 4x – 3y – 2z + 3 = 0
Mặt phẳng đi qua điểm A(1;1;1) và vuông
góc với hai mặt phẳng x + y - z -2 = 0,
x + y + z - 1 = 0 có phương trình là
Trong không gian Oxyz, lập phương trình mặt phẳng (P) đi qua điểm A(2;-1;-2) và song song với mặt phẳng (Q): 2x - y + 2z = 0
A. 2x - y + 2z - 1 = 0
B. 2x - y + 2z + 9 = 0
C. 2x - y - 2z + 1 = 0
D. 2x - y + 2z + 1 = 0
Đáp án A
Vì mặt phẳng (P) song song với mặt phẳng (Q): 2x – y + 2z = 0 nên mặt phẳng (P) có dạng: 2x – y + 2z + d = 0
Mà mặt phẳng (P) đi qua điểm A(2; -1; -2) nên:
2.2 –(-1) + 2.(-2) + d = 0 nên d = -1
Vậy phương trình mặt phẳng (P) là: 2x – y + 2z – 1= 0