Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x − 6 y + z + 2017 = 0 và điểm A(1;-2;1). Phương trình đường thẳng đi qua A và vuông góc với (P) là:
A. Δ : x = 1 + t y = − 2 − 6 t z = 1 + t
B. Δ : x = − 1 + t y = − 2 − 6 t z = 1 + t
C. Δ : x = 1 + t y = − 6 − 2 t z = 1 + t
D. Δ : x = 1 + t y = 6 − 2 t z = 1 + t
Trong không gian với hệ tọa độ Oxyz, cho điểm M 3 ; − 1 ; − 2 và mặt phẳng P : 3 x − y + 2 z + 4 = 0. Phương trình nào dưới đây là phương trình mặt phẳng đi qua M và song song với (P)?
A. Q : 3 x − y + 2 z + 6 = 0
B. Q : 3 x − y − 2 z − 6 = 0
C. Q : 3 x − y + 2 z − 6 = 0
D. Q : 3 x + y − 2 z − 14 = 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x 1 = y - 1 2 = z + 2 2 mặt phẳng (P): 2x+y+2z-5=0 và điểm A(1; 1; -2) Phương trình chính tắc của đường thẳng ∆ đi qua A song song với mặt phẳng (P) và vuông góc với d là
A. ∆ : x - 1 1 = y - 1 2 = z + 2 - 2
B. ∆ : x - 1 2 = y - 1 1 = z + 2 - 2
C. ∆ : x - 1 2 = y - 1 2 = z + 2 - 3
D. ∆ : x - 1 1 = y - 2 2 = z + 2 2
Trong không gian tọa độ Oxyz, cho đường thẳng x - 1 1 = y - 2 - 2 = z + 1 - 1 và mặt phẳng (P):2x - y - 2z - 2018 = 0. Phương trình mặt phẳng (Q) chứa đường thẳng D và tạo với (P) một góc nhỏ nhất cắt các trục tọa độ lần lượt tại các điểm A, B, C. Thể tích tứ diện O.ABC là:
A. 1 6
B. 32 3
C. 32 6
D. 64 3
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(2;1;1) và mặt phẳng ( α ) : x + y + z - 4 = 0 và mặt cầu ( S ) : x 2 + y 2 + z 2 - 6 x - 6 y - 8 z + 18 = 0 . Phương trình đường thẳng d đi qua M và nằm trong mặt phẳng ( α ) cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất là
A. △ : x - 2 1 = y - 1 - 2 = z - 1 1
B. △ : x + 2 1 = y + 1 - 2 = z + 1 1
C. △ : x - 2 1 = y - 1 2 = z - 1 - 3
D. △ : x - 2 1 = y - 1 - 2 = z - 1 - 1
Trong không gian với hệ tọa độ Oxyz cho điểm A(2;-1;0) và mặt phẳng ( P ) : x - 2 y + z + 2 = 0 . Gọi I là hình chiếu vuông góc của A trên mặt phẳng (P). Phương trình mặt cầu đi qua A và có tâm I là
A. x + 1 2 + y + 1 2 + z + 1 2 = 6
B. x + 1 2 + y - 1 2 + z + 1 2 = 6
C. x - 1 2 + y - 1 2 + z + 1 2 = 6
D. x + 1 2 + y + 1 2 + z - 1 2 = 6
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (α) đi qua hai điểm A(3;1;-1), B(2;-1;4) và vuông góc với mặt phẳng ( β ) : 3 x + y - 2 z + 5 = 0 là:
A. x+13y+5z+5=0
B. x+13y-5z+5=0
C. x-13y+5z+5=0
D. x-13y-5z+5=0
Trong không gian Oxyz, cho điểm A(1;1;-2) và hai mặt phẳng (P): 3x - y +1 = 0, (Q): x - 2z - 3 = 0. Phương trình đường thẳng d qua điểm A đồng thời song song với cả hai mặt phẳng (P), (Q) là
A. x = 2 + t y = − 6 + t z = 1 − 2 t .
B. x = 5 + 2 t y = 13 + 6 t z = t .
C. x = 1 + 2 t y = 1 − 6 t z = − 2 + t .
D. x = 2 + t y = 6 + t z = 1 − 2 t .
Trong không gian với hệ toạ độ Oxyz, cho điểm A(1;-2;3) và hai mặt phẳng (P):x+y+z+1=0;(Q):x-y+z-2=0. Phương trình nào dưới đây là phương trình đường thẳng qua A, song song với (P) và (Q).
A. x = 1 + 2 t y = - 2 z = 3 + 2 t
B. x = - 1 + t y = 2 z = - 3 - t
C. x = 1 y = - 2 z = 3 - 2 t
D. x = 1 + t y = - 2 z = 3 - t