Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 7 2019 lúc 5:52

Chọn D.

Phương trình đã cho tương đương với phương trình

z( z + 2) ( z - 1) ( z + 3)

Hay ( z2 + 2z) ( z2 + 2z - 3) = 10

Đặt t = z2 + 2z. Khi đó phương trình trở thành: t2 - 2t – 10 = 0.

Vậy phương trình có các nghiệm: 

Tổng tất cả  các phần thực của các nghiệm phương trình đã cho là:

-1+ ( -1) + (-1) + ( -1) = -4.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 4 2017 lúc 18:22

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 7 2017 lúc 4:00

Đáp án D.

Ngọc Khánh
Xem chi tiết
Ngô Linh
Xem chi tiết
Minh Hiếu
Xem chi tiết
Trên con đường thành côn...
7 tháng 1 2022 lúc 20:36

Bài 2: Ta có:

\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ

\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).

Thay vào tìm được y...

Trên con đường thành côn...
7 tháng 1 2022 lúc 21:12

Lúc nãy bận thi online nên giờ mới làm tiếp được, bạn thông cảm.

Bài 4:

Do p; q; r là các SNT nên \(p^q+q^p>2^2+2^2=8\Rightarrow r>8\) nên r là SNT lẻ

Mà r lẻ thì trong 2 số \(p^q;q^p\) phải có 1 số lẻ, một số chẵn.

Do vai trò p; q như nhau nên không mất tính tổng quát ta giả sử p lẻ, q chẵn

\(\Rightarrow q=2\). Lúc này ta có:

\(p^2+2^p=r\)

+Xét p=3\(\Rightarrow p^2+2^p=r=17\left(tm\right)\) (Do p lẻ nên loại TH p=2)

+Xét p>3. Ta có:

\(\left\{{}\begin{matrix}p^2\equiv1\left(mod3\right)\\2^p\equiv\left(-1\right)^p\equiv-1\left(mod3\right)\end{matrix}\right.\)

\(\Rightarrow p^2+2^p\equiv1+\left(-1\right)\equiv0\left(mod3\right)\)

\(\Rightarrow\left(p^2+2^p\right)⋮3\) mà \(p^2+2^p>3\) nên là hợp số

\(\Rightarrow r\) là hợp số, không phải SNT, loại.

Vậy ta có \(\left(p;q;r\right)\in\left\{\left(3;2;17\right);\left(2;3;17\right)\right\}\) tm đề bài

 

Trên con đường thành côn...
7 tháng 1 2022 lúc 21:22

Bài 6: Ta có 1SCP lẻ chia cho 4 dư 1.

Nếu 2n-1 là SCP thì ta có

\(2n-1\equiv1\left(mod4\right)\Leftrightarrow2n+1\equiv3\left(mod4\right)\)

Do đó 2n+1 không là SCP

\(\Rightarrowđpcm\)

yeens
Xem chi tiết
Bùi Lê Hân
Xem chi tiết
Nguyễn Tũn
7 tháng 8 2018 lúc 17:18

Hãy tích nếu như bạn thông minh

Ai ko tích là bình thường

Còn ai dis là "..."

Thanh Tùng DZ
5 tháng 5 2020 lúc 16:28

Ta có : \(\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy-\left(x+y\right)+1\ge0\)

\(\Rightarrow xy+z+1\ge x+y+z\Rightarrow\frac{y}{xy+z+1}\le\frac{y}{x+y+z}\)

Tương tự : \(\frac{x}{xz+y+1}\le\frac{x}{x+y+z}\)\(\frac{z}{yz+x+1}\le\frac{z}{x+y+z}\)

Cộng lại,ta được :

\(VT\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)( 1 )

Mà \(x+y+z\le3\Rightarrow VP=\frac{3}{x+y+z}\ge1\)( 2 )

Dấu "=" xảy ra khi x = y = z = 1

Từ ( 1 ) và ( 2 ) suy ra x = y = z = 1

Vậy ...

Khách vãng lai đã xóa
trần thị hoa
Xem chi tiết