Tính nhanh
1/2+1/6+1/12+1/20+...+1/90+1/110+1/132
1/2+1/6+1/12+1/20+...+1/90+1/110+1/132
mk giải như thề này đ ko ạ
Là sao mik chả hỉu gì cả??????
Ta có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
= \(1-\frac{1}{12}=\frac{11}{12}\)
1/2 + 6/ 1 + 12/ 1 + ......... + 1/132 = 1/ 1.2 + 1/2.3 + 1/3.4 + .......... +1/ 11.12 = 1 − 1/2 + 1/'2 − 1/3 + 1/3 − 1/4 + ........... + 1/11 − 1/12 = 1 − 1/12 = 11/12
Tính nhanh
1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(=\dfrac{1}{1}\cdot\dfrac{1}{2}+\dfrac{1}{2}\cdot\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{1}{4}+\dfrac{1}{4}\cdot\dfrac{1}{5}+\dfrac{1}{5}\cdot\dfrac{1}{6}+\dfrac{1}{6}\cdot\dfrac{1}{7}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(=\dfrac{1}{1}-\dfrac{1}{7}=\dfrac{7}{7}-\dfrac{1}{7}=\dfrac{6}{7}\)
1/2 cộng 1/6 cộng 1/12 cộng .... cộng 1/132
1/90 cộng 1/110 cộng 1/132 cộng ..... cộng 1/10100
1/2 + 1/6 + 1/12 + ... + 1/132
= 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/11.12
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/11 - 1/12
= 1 - 1/12
= 11/12
1/90 + 1/110 + 1/132 + ... + 1/10100
= 1/9.10 + 1/10.11 + 1/11.12 + ... + 1/100.101
= ... [như trên]
= 1/9 - 1/100
= 49/450
1/12 + 1/20 + 1/42 + 1/56 + 1/72+ 1/90 + 1/110 + 1/132
1/12 + 1/20 + ... + 1/132
= 1/3×4 + 1/4×5 + ... + 1/11×12
= 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/11 - 1/12
= 1/3 - 1/12
= 4/12 - 1/12
= 3/12 = 1/4
\(=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{11.12}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{3}-\frac{1}{12}\)
\(=\frac{1}{4}\)
1/12 + 1/20 + ... + 1/132
= 1/3.4 + 1/4.5 + 1/6.7 + 1/7.8 + 1/9.10 + 1/10.11 + 1/11.12
= 1/3 - 1/4 + 1/4 - 1/5 + 1/6 - 1/7 + 1/7 - 1/8 + 1/9 - 1/10 + 1/10 - 1/11 + 1/11 - 1/12
= 1/3 - 11/30 - 17/72 - 1/12
= \(-\left(\frac{127}{360}\right)\)
1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72+1/90 + 1/110 + 1/132 = ?
Tính tổng A= 1- 5/6 +7/12 - 9/20 + 11/30 - 13/42 + 15/56 - 17/72 + 19/90 - 21/110 + 23/132 - 25/156
A=1/3+1/2+1/6+1/12+1/20+......+1/110+1/132+2/3
A=1/3+1/2+1/6+1/12+1/20+....+1/110+1/132+2/3
Tính tổng
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.........+\frac{1}{110}+\frac{1}{132}\)
=1/1*2+1/2*3+1/3*4+...+1*10*11+1/11*12=1-1/2+1/2-1/3+1/3-1/4+...+1/10-1/11+1/11-1/12
=1-1/12=11/12.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{10\times11}+\frac{1}{11\times12}\)
\(=1-\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{11}+\frac{1}{12}\)
\(=1-\frac{1}{12}\)
\(=\frac{11}{12}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(=1-\frac{1}{12}\)
\(=\frac{11}{12}\)
k mình nha ! Chúc bạn học giỏi ! ^_^