Dãy số u n là một cấp số cộng có số hạng đầu là u 1 , công sai là d. Khi đó, số hạng tổng quát u n bằng:
A. u n = u 1 + n - 1 d
B. u n = u 1 + n + 1 d
C. u n = n - 1 d
D. u n = 2 u 1 + n - 1 d
Viết năm số hạng đầu của mỗi dãy số \(\left( {{u_n}} \right)\) sau và xét xem nó có phải là cấp số cộng không. Nếu dãy số đó là cấp số cộng, hãy tìm công sai d và viết số hạng tổng quát của nó dưới dạng \({u_n} = {u_1} + \left( {n - 1} \right)d\)
a) \({u_n} = 3 + 5n;\)
b) \({u_n} = 6n - 4\);
c) \({u_1} = 2,\;{u_n} = {u_{n - 1}} + n\);
d) \({u_1} = 2,\;{u_n} = {u_{n - 1}} + 3\).
a) \({u_1} = 8;\;\;\;\;{u_2} = 13;\;\;\;\;\;{u_3} = 18;\;\;\;\;\;{u_4} = 23;\;\;\;\;\;{u_5} = 28\).
Ta có: \({u_n} - {u_{n - 1}} = 3 + 5n - \left[ {3 + 5\left( {n - 1} \right)} \right] = 5,\;\forall n \ge 2\).
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 8\) và công sai \(d = 5\).
Số hạng tổng quát: \({u_n} = 8 + 5\left( {n - 1} \right)\).
b) \({u_1} = 2;\;\;\;\;{u_2} = 8;\;\;\;\;{u_3} = 14;\;\;\;\;\;{u_4} = 20;\;\;\;\;\;{u_5} = 26\).
Ta có: \({u_n} - {u_{n - 1}} = 6n - 4 - \left[ {6\left( {n - 1} \right) - 4} \right] = 6,\;\forall n \ge 2\).
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2\) và công sai \(d = 6\).
Số hạng tổng quát: \({u_n} = 2 + 6\left( {n - 1} \right)\).
c) \({u_1} = 2;\;\;\;\;{u_2} = 4;\;\;\;\;\;{u_3} = 7;\;\;\;\;\;\;{u_4} = 11;\;\;\;\;\;\;\;{u_5} = 16\)
Ta có: \({u_n} - {u_{n - 1}} = n,\;\) n biến động.
Suy ra đây không phải là cấp số cộng.
d) \({u_1} = 2;\;\;\;\;{u_2} = 5;\;\;\;\;\;\;{u_3} = 8;\;\;\;\;\;\;{u_4} = 11;\;\;\;\;\;\;\;{u_5} = 14\)
Ta có: \({u_n} - {u_{n - 1}} = 3\).
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2\) và công sai \(d = 3\).
Số hạng tổng quát: \({u_n} = 2 + 3\left( {n - 1} \right),\;\forall n \ge 2\).
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
Trong các dãy số \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = - 3\), công sai d = 5
a) Viết công thức của số hạng tổng quát \({u_n}\)
b) Số 492 là số hạng thứ mấy của cấp số cộng trên?
c) Số 300 có là số hạng nào của cấp số cộng trên không?
a) Ta có: \({u_n} = - 3 + \left( {n - 1} \right).5\)
b) Ta có:
\(\begin{array}{l}492 = - 3 + \left( {n - 1} \right).5\\ \Leftrightarrow n - 1 = 99\\ \Leftrightarrow n = 100\end{array}\)
492 là số hạng thứ 100 của cấp số cộng
c) Ta có: \(300 = - 3 + \left( {n - 1} \right).5 \Leftrightarrow n - 1 = 60,6\)
300 không là số hạng của cấp số cộng
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 4n - 3\). Chứng minh rằng \(\left( {{u_n}} \right)\) là một cấp số cộng. Xác định số hạng đầu \({u_1}\) và công sai d của cấp số cộng này. Từ đó viết số hạng tổng quát \({u_n}\) dưới dạng \({u_n} = {u_1} + \left( {n - 1} \right)d\)
Ta có: \({u_n} - {u_{n - 1}} = \left( {4n - 3} \right) - \left[ {4\left( {n - 1} \right) - 3} \right] = 4,\;\forall n \ge 2\).
Vậy \(\left( {{u_n}} \right)\) là một cấp số cộng với số hạng đầu \({u_1} = 1\) và công sai \(d = 4\)
Số hạng tổng quát \({u_n} = 1 + 4\left( {n - 1} \right)\).
Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số nào là cấp số cộng? Nếu là cấp số cộng, hãy tìm số hạng đầu \({u_1}\) và công sai d.
a) \({u_n} = 3 - 2n\)
b) \({u_n} = \frac{{3n + 7}}{5}\)
c) \({u_n} = {3^n}\)
a) Dãy số trên là cấp số cộng
Ta có:
\(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_1} + \left( {n - 1} \right)d = 3 - 2n\\ \Leftrightarrow {u_1} + nd - d = 3 - 2n\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = 3\\nd = - 2n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = - 2\end{array} \right.\end{array}\)
b) Dãy số trên là cấp số cộng
Ta có:
\(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_1} + \left( {n - 1} \right)d = \frac{{3n + 7}}{5}\\ \Leftrightarrow {u_1} + nd - d = \frac{{3n}}{5} + \frac{7}{5}\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = \frac{7}{5}\\nd = \frac{3}{5}n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\d = \frac{3}{5}\end{array} \right.\end{array}\)
c) Dãy số đã cho không là cấp số cộng
Ta có: \( u_{n+1} = 3^{n+1} = 3.3^n \)
Xét hiệu \( u_{n+1} – u_n = 3.3^n – 3^n = 2.3^n \) với n ∈ ℕ*
Cho u n là một cấp số cộng có tổng n số hạng đầu tính được theo công thức S n = 5 n 2 + 3 n với n ∈ N * . Số hạng đầu u 1 và công sai d của cấp số cộng đó là
A. u 1 = - 8 d = 10
B. u 1 = - 8 d = - 10
C. u 1 = 8 d = 10
D. u 1 = 8 d = - 10
1) cho dãy số có các số hạng đầu là 8; 15;22; 29; 36;.. số hạng tổng quát của dãy số là
2) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=2;d=9\). Khi đó số 2018 là số hạng thứ mấy của dãy
3) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=5;q=2\). Số hạng thứ 6 của cấp số nhân là
4) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=2;u_2=6\).Công bội của cấp số nhân bằng
Một cấp số cộng có tổng n số hạng đầu là S n được tính theo công thức S n = 5 n 2 + 3 n , n ∈ ℤ * . Tìm số hạng đầu u 1 và công sai d của cấp số cộng đó.
A. u 1 = -8, d = 10
B. u 1 = -8, d = -10
C. u 1 = 8, d = 10
D. u 1 = 8, d = -10
Cho dãy số u n là một cấp số cộng có u 1 = 3 và công sai d=4. Biết tổng n số hạng đầu của dãy số u n là S n = 253 . Tìm n?
A. 10
B. 9
C. 12
D. 11