Tìm tất cả các giá trị thức của tham số m để hàm số f ( x ) = x 2 - 16 x - 4 k h i x > 4 m x + 1 k h i x ≤ 4 liên tục trên R
A. m=8 hoặc m = - 7 4
B. m = 7 4
C. m = - 7 4
D. m=-8 hoặc m = 7 4
Cho hàm số ( ) ( )2 2 1 2 1f x x m x m= − − − + − . Tìm tất cả các giá trị của tham số m để ( ) 0f x >Cho hàm số \(f\left(x\right)=-x^2-2\left(m-1\right)x+2m-1\). Tìm tất cả các giá trị của tham số \(m\) để \(f\left(x\right)>0,\forall x\in\left(0;1\right)\).
, ( )Cho hàm số ( ) ( )2 2 1 2 1f x x m x m= − − − + − . Tìm tất cả các giá trị của tham số m để ( ) 0f x >, ( )
Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)
\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)
Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)
\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)
Cho hàm số đa thức bậc ba y=f(x) có đồ thị như hình bên. Tìm tất cả các giá trị của tham số m để hàm số y = | f ( x ) + m | có ba điểm cực trị
A. m ≤ - 1 hoặc m ≥ 3
B. m ≤ - 2 hoặc m ≥ 3
C. m ≤ - 1 hoặc m ≥ 5
D. 1 ≤ m ≤ 3
Cho hàm số f(x) = x4 - 2x2 + m - 1 (với m là tham số thực). Tìm tất cả các giá trị của tham số m để giá trị nhỏ nhất của hàm số g(x) = \(\left|f\left(x\right)\right|\) trên đoạn [0;2] bằng 2020.
\(f'\left(x\right)=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Để \(g\left(x\right)_{min}>0\Rightarrow f\left(x\right)=0\) vô nghiệm trên đoạn đã cho
\(\Rightarrow\left[{}\begin{matrix}-m< -2\\-m>7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -7\end{matrix}\right.\)
\(g\left(0\right)=\left|m-1\right|\) ; \(g\left(1\right)=\left|m-2\right|\) ; \(g\left(2\right)=\left|m+7\right|\)
Khi đó \(g\left(x\right)_{min}=min\left\{g\left(0\right);g\left(1\right);g\left(2\right)\right\}=min\left\{\left|m-2\right|;\left|m+7\right|\right\}\)
TH1: \(g\left(x\right)_{min}=g\left(0\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m-2\right|\le\left|m+7\right|\\\left|m-2\right|=2020\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge\dfrac{5}{2}\\\left|m-2\right|=2020\end{matrix}\right.\) \(\Rightarrow m=2022\)
TH2: \(g\left(x\right)_{min}=g\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m+7\right|\le\left|m-2\right|\\\left|m+7\right|=2020\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{2}\\\left|m+7\right|=2020\end{matrix}\right.\) \(\Rightarrow m=-2027\)
Cho hàm số . Tìm tất cả các giá trị của tham số m để hàm số y = f ( x ) có 5 điểm cực trị.
Cho hàm số f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tìm tất cả các giá trị thực của tham số m để hàm số y=f(|x|) có 5 cực trị
A. - 10 < m < 5 4
B. - 2 < m < 5
C. - 2 < m < 5 4
D. 5 4 < m < 2
Tìm tất cả các giá trị thực của tham số m để hàm số f ( x ) = sin x - m sin 2 x - 1 3 sin 3 x + 2 m x có f ' ( x ) ≥ 0 với mọi x ∈ ℝ .
A. m ∈ [ 1 ; + ∞ )
B. m ∈ - 1 ; 1
C. m ∈ ( - ∞ ; - 1 ]
D. m ∈ 1 ; 2
Đáp án A.
Ta có f ' ( x ) = = cos x - 2 m cos 2 x - cos 3 x + 2 m = cos x - cos 3 x - 2 m ( cos 2 x - 1 )
Hàm số có f ' ( x ) ≥ 0 , ∀ x ∈ ℝ ⇔ cos x - cos 3 x ≥ 2 m cos 2 x - 1 , ∀ x ∈ ℝ . (*)
Với cos 2 x = 1 thì thỏa mãn (*).
Với cos 2 x ≢ 1 thì ⇔ cos x - cos 3 x cos 2 x - 1 ≤ 2 m , ∀ x ∈ ℝ .
Đặt cos x - cos 3 x cos 2 x - 1 = g ( x ) . Để g ( x ) ≤ 2 m , ∀ x ∈ ℝ , thì 2 m ≥ m a x R g ( x ) .
Sử dụng máy tính cầm tay ta có
Từ bảng giá trị kết hợp với phương án thì ta suy ra
m a x ℝ g ( x ) = 2 ⇔ 2 m ≥ 2 ⇔ m ≥ 1 .
Cho hàm số f(x) = x - m 2 + m x + 1 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 1] bằng – 2.
A. m= 1
B. m= -2
C. m= -1
D. m= -1 hoặc m= 2
Đạo hàm f'(x) = m 2 - m + 1 ( x + 1 ) 2 > 0, ∀ x ∈ [ 0 ; 1 ]
Suy ra hàm số f(x) đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m
Theo bài ta có:
-m2+ m= -2 nên m= -1 hoặc m= 2.
Chọn D.
Cho đa thức f(x) hệ số thực và thỏa điều kiện 2 f x + f 1 - x = x 2 , ∀ x ∈ ℝ . Tìm tất cả các giá trị của tham số thực m để hàm số y = 3 x . f x + m - 1 x + 1 đồng biến trên ℝ
A. m ∈ ℝ
B. m ≥ 10 3
C. m ≤ 1
D. m > 1
Cho đa thức f(x) hệ số thực và thỏa điều kiện 2 f x + f 1 - x = x 2 , ∀ x ∈ ℝ . Tìm tất cả các giá trị của tham số thực m để hàm số y = 3 x f x + m - 1 x + 1 đồng biến trên ℝ
A. m ∈ ℝ
B. m ≥ 10 3
C. m ≤ 1
D. m > 1
Từ giả thiết, thay x bởi x-1 ta được
Khi đó ta có
Suy ra
YCBT
Chọn B.