Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 4 2017 lúc 4:30

Chọn D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 3 2019 lúc 13:15

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 5 2018 lúc 16:02

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 10 2019 lúc 4:43

Đáp án B

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 7 2018 lúc 4:54

Đáp án B

An Sơ Hạ
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 2 2021 lúc 17:06

a. (P) vuông góc denta nên nhận (1;2;3) là 1 vtpt

Phương trình (P):

\(1\left(x-2\right)+2\left(y-1\right)+3\left(z-3\right)=0\)

\(\Leftrightarrow x+2y+3z-13=0\)

b. \(\overrightarrow{AB}=\left(1;2;-1\right)\) ; \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\)

\(\left[\overrightarrow{AB};\overrightarrow{n_{\left(P\right)}}\right]=\left(3;-2;-1\right)\)

Phương trình mp:

\(3\left(x-1\right)-2\left(y+1\right)-1\left(z-2\right)=0\)

\(\Leftrightarrow3x-2y-z-3=0\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 7 2019 lúc 4:50

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 10 2018 lúc 7:08

Đáp án A

An Sơ Hạ
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 2 2021 lúc 17:01

a. Mặt phẳng (P) có (3;-2;2) là 1 vtpt nên d nhận (3;-2;2) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+3t\\y=2-2t\\z=-1+2t\end{matrix}\right.\)

b. \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) ; \(\overrightarrow{n_{\left(P'\right)}}=\left(1;-1;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(P'\right)}}\right]=\left(2;0;-2\right)=2\left(1;0;-1\right)\)

\(\Rightarrow\) d nhận (1;0;-1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=-2\\z=3-t\end{matrix}\right.\)

c. \(\overrightarrow{u_{\Delta}}=\left(3;2;1\right)\) ; \(\overrightarrow{u_{\Delta'}}=\left(1;3;-2\right)\)

\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{u_{\Delta'}}\right]=\left(-7;7;7\right)=7\left(-1;1;1\right)\)

Đường thẳng d nhận (-1;1;1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=-1-t\\y=1+t\\z=3+t\end{matrix}\right.\)