Cho tam giác ABC vuông cân tại A.Đường phân giác BD.Tính AD,DC biết AB=1dm
Cho tam giác ABC vuông tại A . Đường phân giác BD.Tính AB,BC biết AD=4cm ;DC=5cm
Ta có: AD+DC=AC(D nằm giữa A và C)
nên AC=4+5=9(cm)
Cho tam giác ABC vuông tại A có AB=6cm,BC=10,phân giác BD.tính DA,DC
Cho tam giác ABC vuông tại A có AB=6cm,AC=10,phân giác AD.tính BC,DB,DC
cho tam giác ABC Vuông tại A có AB=6cm,AC=8cm,AH là đường cao.A)chứng minh tam giác HBA đồng dạng tam giác ABC,B)tia phân giác góc ABC cắt AC tại D,I là giao điểm của AH và BD.tính AD,DC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BD là phân giác
=>DA/AB=DC/BC
=>DA/3=DC/5=(DA+DC)/(3+5)=8/8=1
=>DA=3cm; DC=5cm
Cho tam giác ABC vuông tại A có AB=6cm,BC=10,phân giác BD.tính DA,DC
Cho tam giác ABC vuông tại A có AB=6cm,AC=10,phân giác AD.tính BC,DB,DC
Cho tam giác ABC vuông tại A có AB=6cm,BC=10,phân giác BD.tính DA,DC
Cho tam giác ABC vuông tại A.Đường phân giác BD.Vẽ DH vuông góc với BC(H thuộc BC) chứng minh AD<DC
hình nháp thôi nha bạn :
Xét \(\Delta ABD\) và \(\Delta HBD\) vuông lần lượt tại A và H có :
\(BD:\) cạnh chung
\(\) góc \(ABD=\) góc \(HBD\)
Do đó : \(\Delta ABD=\Delta HBD\left(c.h-g.n\right)\)
\(\Rightarrow AD=HD\)
Xét \(\Delta HDC\) vuông tại H :
\(\Rightarrow DC>HD\) ( quan hệ giữa góc mà cạnh đối diện )
mà \(AD=HD\left(cmt\right)\)
\(\Rightarrow AD< DC\left(đpcm\right)\)
CHO TG ABC CÂN TẠI A , BIẾT AB=AC=20CM, ĐƯỜNG PHÂN GIÁC BD.TÍNH DC
cho tam giác ABC vuông tại A.Đường cao AH cắt đường phân giác BD tại I. chứng minh rằng
a,IA.BH=IH.BA
b,ABʌ2 =HB>BC
c,HI/IA=AD/DC
b: Xé ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)
hay \(AB^2=BH\cdot BC\)
cho tam giác abc vuông tại a.Đường phân giác bd(d thuộc ac).từ d kẻ dh vuông góc với bc tại h.Đường thẳng dh cắt đường thẳng ab tại k a)chứng minh ad=hd b)so sánh độ dài ad và dc c)chứng minh bd vuông góc với kc
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: AD=DH
DH<DC
=>AD<DC
c: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại D
=>D là trực tâm
=>BD vuông góc KC