a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BD là phân giác
=>DA/AB=DC/BC
=>DA/3=DC/5=(DA+DC)/(3+5)=8/8=1
=>DA=3cm; DC=5cm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BD là phân giác
=>DA/AB=DC/BC
=>DA/3=DC/5=(DA+DC)/(3+5)=8/8=1
=>DA=3cm; DC=5cm
Cho tam giác ABC vuông tại A (AB<AC). Vẽ đường cao AH (H thuộc BC). Gọi D là điểm đối xứng với B qua H
a) chứng minh tam giác ABC đồng dạng vs tam giác HBA
b) từ C kẻ đường thẳng vuông góc vs tia AD, cắt AD tại E. Chứng minh AH.CD=CE.AD
c) chứng minh tam giác ABC đồng dạng vs tam giác EDC và tính diện tích tam giác EDC bt AB=6cm, AC=8cm
d) bt AH cắt CE tại E, tia FD cắt AC tại K. Chứng minh KD là tia phân giác góc HKE
Cho Tam giác ABC vuông tại A , AB=6cm , AC=8cm .Có đường cao AH , tia phân giác góc B cắt AC tại D , gọi I là giao điểm của AH và BD . a. Tính AD và DC b. C/M IH/HA=AD/DC
Cho tam giác ABC vuông tại A, có AB = 12cm, AC = 16cm. Kẻ AH vuông góc với BC. Tia phân giác của góc ABC cắt AC tại D
a) Tính BC và tỉ số AD/DC
b) Chứng minh tam giác HBA đồng dạng với tam giác ABC
c) Tính tỉ số diện tích của tam giác HBA và tam giác ABC
d) Gọi E là hình chiếu của điểm C trên đường thẳng BD; K là giao điểm của BD và AH. Chứng minh rằng AB2 = BK. BE
Cho tam giác vuông ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH. a) Chứng minh tam giác ABC đồng dạng với tam giác HBA b) Chứng minh: AB²=HB.HC c) Tính độ dài các cạnh BC, AH d) Phân giác của góc ABC cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE
Cho ABC vuông tại A, có AH đường cao.
a) Chứng minh: AB^2 = BH.BC
b) Tia phân giác của góc B cắt AH tại D và cắt AC tại E. chứng minh: ADB đồng dạng
C) Tam giác ADE là tam giác gì ? Vì sao ?
cho tam giác ABC vuông tại A đường cao ah .chứng minh tam giác HBA đồng dạng với tam giác ABC , chứng minh AH^2 = HB×HC ,tia phân giác góc AHC cắt AC tại d chứng minh HB/HC = AB^2/DC^2 , khi c bằng 45° và AB =6cm tính độ dài HD
Tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH. Lấy D đối xứng với B qua H.
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA
b) Qua C vẽ đường thẳng vuông góc với tia AD cắt AD tại E. Chứng minh rằng AH.CD = CE.AD
c) Chứng minh tam giác HDE đồng dạng với tam giác ADC.
d) Cho AB = 6cm, AC = 8cm. Tính diện tích tam giác DEC
e) AH cắt CE tại F. Chứng minh ABFD là hình thoi.
Cho tam giác ABC vuông tại A có AB=6cm,BC-10cm.Vẽ đường cao AH
a) c/minh tam giác HBA đồng dạng tam giác ABC
b)tính AC và diện tích tam giác HBA
c)tia phân giác của góc ABC cắt AC tại D và cắt AH tại K.Từ D kẻ DE vuông góc vs BC.c/minh AK.DE=KH.DC
Cho tam giác ABC vuông tại A,đường cao AH.đường phân giác của góc ABC cắt AC tại D và cắt AH tại E.
a. Chứng minh tam giác ABC đồng dạng tam giác HBA,AB2=BC.BH
b. Biết AB=9cm,BC=15cm.Tính DC và AD?
c.Gọi I là trung điểm ED.Chứng minh góc BIH=góc ACB