Tìm tập nghiệm S của phương trình log x = log x .
A. S = 1 ; + ∞
B. S = 0 ; + ∞
C. S = 1 ; 10
D. S = 1 ; + ∞
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x ∘ . Giá trị của a + b - x ∘ bằng:
A. 150.
B. 100.
C. 30.
D. 50.
Tập nghiệm của bất phương trình log 2 x - 1 ≥ log x là
Tìm tập nghiệm S của phương trình log2(x–1) + log2(x+1) = 3
ĐKXĐ: \(x>1\)
\(log_2\left(x-1\right)+log_2\left(x+1\right)=3\)
\(\Leftrightarrow log_2\left(x-1\right)\left(x+1\right)=3\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=8\)
\(\Leftrightarrow x^2-9=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-3< 1\left(l\right)\end{matrix}\right.\)
Vậy tập nghiệm của pt là \(S=\left\{3\right\}\)
Tìm tập nghiệm của bất phương trình log ( x - 21 ) < 2 - log x
A. (-4; 25)
B. (0; 25)
C. (21; 25)
D. (25; +∞)
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x 0 . Giá trị của a + b - x 0 bằng:
A. 100
B. 30
C. 150
D. 50
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = (a;b)\{x0}. Giá trị của a + b – x0 bằng:
A. 100
B. 30
C. 150
D. 50
Cho đồ thị của hàm số \(y = {\log _2}x\) và y = 2 như Hình 6.8. Tìm khoảng giá trị của x mà đồ thị hàm số \(y = {\log _2}x\) nằm phía trên đường thẳng y = 2 và từ đó suy ra tập nghiệm của bất phương trình \({\log _2}x > 2.\)
Khoảng giá trị của x mà đồ thị hàm số \(y=log_2x\) nằm phía trên đường thẳng y = 2 là \(\left(4;+\infty\right)\)
\(\Rightarrow\) Tập nghiệm của bất phương trình \(log_2x>2\) là \(\left(4;+\infty\right)\)
Tìm S là tập hợp các nghiệm của phương trình log|x|=|logx|
Để \(logx\) xác định \(\Rightarrow x>0\Rightarrow log\left|x\right|=logx\)
Pt tương đương:
\(logx=\left|logx\right|\Leftrightarrow logx>0\Rightarrow x>1\)
\(\Rightarrow S=\left(1;+\infty\right)\)
Cho phương trình log2(10x) - 2mlog10xx - log(10x2)=0 . Gọi S là tập chứa tất cả các giá trị nguyên của m thuộc [-10;10] để phương trình đã cho có đúng 3 nghiệm phân biệt . Số phần tử của tập S là
Tập nghiệm của bất phương trình log(x2 + 25) > log(10x) là