Có bao nhiêu giá trị nguyên của tham số m để phương trình 9 x - 3 x + 2 + 2 = m có 2 nghiệm thực phân biệt?
A. 20
B. 18
C. 21
D. 19
Có bao nhiêu giá trị nguyên thuộc khoảng (-9; 9) của tham số m để bất phương trình 3 log x ≤ 2 log m x − x 2 − 1 − x 1 − x
có nghiệm thực?
A. 6
B. 7
C. 10
D. 11
Đáp án B.
Phương pháp:
Bất phương trình m ≥ f x , x ∈ D có nghiệm khi và chỉ khi m ≥ M i n D f x .
Cách giải:
ĐKXĐ: 0 < x < 1
3 log x ≤ 2 log m x − x 2 − 1 − x 1 − x ⇔ m x − x 2 − 1 − x 1 − x ≥ x x
⇔ m ≥ x x + 1 − x 1 − x x − x 2 , x ∈ 0 ; 1
Để bất phương trình đã cho có nghiệm thực thì m ≥ M i n 0 ; 1 f x , f x = x x + 1 − x 1 − x x − x 2
Xét
f x = x x + 1 − x 1 − x x − x 2 = x + 1 − x 1 − x x − 1 x x − 1 , x ∈ 0 ; 1
Đặt t = x + 1 − x , t ∈ 1 ; 2
Khi đó,
f x = x + 1 − x 1 − x 1 − x x 1 − x = t 1 − t 2 − 1 2 t 2 − 1 2 = t 3 − t 2 t 2 − 1 = 3 t − t 3 t 2 − 1 = g t
g ' t = − t 4 − 3 t 2 − 1 2 < 0 , ∀ t ∈ 1 ; 2
⇒ g t min = g 2 = 3 2 − 2 2 2 − 1 = 2 ⇒ M i n 0 ; 1 f x = 2 ⇒ m ≥ 2
Mà
m ∈ − 9 ; 9 ⇒ m ∈ 2 ; 3 ; 4 ; ... ; 8 ⇒
Có 7 giá trị thỏa mãn.
Có bao nhiêu giá trị nguyên của tham số m để phương trình 6 + x - 2 - x - 3 + x - 6 - x - 5 - m = 0 có nghiệm thực
A. 0
B. 2
C. 3
D. 1
Có bao nhiêu giá trị nguyên của tham số m để phương trình
m + 3 . m + cos x 3 3 = cos x có nghiệm thực?
A. 2.
B. 7.
C. 5.
D. 3.
Cho phương trình m. sin x + 4. cos x = 2m - 5 với m là tham số. Có bao nhiêu giá trị nguyên của m để phương trình có nghiệm?
A. 4
B. 7.
C. 6.
D. 5
ĐKXĐ: \(x\ge0\)
- Với \(x=0\) ko phải là nghiệm
- Với \(x>0\) chia 2 vế cho \(x\) ta được:
\(\dfrac{x^2+4}{x}+2-m=4\sqrt{\dfrac{x^2+4}{x}}\)
Đặt \(\sqrt{\dfrac{x^2+4}{x}}=t\ge2\)
\(\Rightarrow t^2-4t+2=m\)
Xét hàm \(f\left(t\right)=t^2-4t+2\) với \(t\ge2\)
\(\Rightarrow f\left(t\right)\ge f\left(2\right)=-2\Rightarrow m\ge-2\)
Có \(2018-\left(-2\right)+1=2021\) giá trị nguyên của m
Cho phương trình:
sin 3 x + 2 sin x + 3 = 2 c o s 3 x + m 2 c o s 3 x + m - 2 + 2 c o s 3 x + c o s 2 x + m .
Có bao nhiêu giá trị nguyên của tham số m để phương trình trên có đúng 1 nghiệm x ∈ 0 ; 2 π 3 ?
A. 2
B. 1
C. 3
D. 4
Có bao nhiêu giá trị nguyên của tham số m để phương trình
\(\sqrt{x+2}+\sqrt{2-x}+2\sqrt{4-x^2}+2m+3=0\) có nghiệm
ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{x+2}+\sqrt{2-x}=t\left(2\le t\le2\sqrt{2}\right)\)
Phương trình đã cho trở thành:
\(t+t^2-4+2m+3=0\)
\(\Leftrightarrow2m=f\left(t\right)=-t^2-t+1\)
Phương trình đã cho có nghiệm khi \(minf\left(t\right)\le2m\le maxf\left(t\right)\)
\(\Leftrightarrow-7-2\sqrt{2}\le2m\le-5\)
\(\Leftrightarrow\dfrac{-7-2\sqrt{2}}{2}\le m\le-\dfrac{5}{2}\)
Cho phương trình 4 6 + x - x 2 - 3 x = m x + 2 + 2 3 - x với m là tham số. Hỏi có bao nhiêu giá trị nguyên của m để phương trình có nghiệm?
A. 10
B. 9
C. 11
D. 8
Chọn đáp án A
Vậy số giá trị nguyên của m để phương trình có nghiệm là 10.
Có bao nhiêu giá trị nguyên dương của tham số m để phương trình \(x^2-2mx+m-10=0\) có hai nghiệm trái dấu
A.10 B.8 C.9 D.11
để pt có hai nghiệm trái dấu:
\(1.\left(m-10\right)< 0\\ =>m< 10\\ =>m=\left\{1;2;3;4;5;6;7;8;9\right\}\\ =>C\)
Có bao nhiêu giá trị nguyên dương của tham số m để phương trình cos 2 x + m sin x - m = 0 có nghiệm?
A. 0
B. 1
C. 2
D. vô số
Đáp án B
PT
Đặt
Để (1) có nghiệm thì (2) có nghiệm có nghiệm
Suy ra có nghiệm
Xét hàm số
Lập bảng biến thiên hàm số