Tìm 2 số x và y biết rằng:\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}vàx+y-z=10\)
Tìm ba số x,y,z biết rằng:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}vàx+y-z=10\)
Ta quy đồng mẫu số để có \(\frac{y}{12}\)chung ( câu này ko cần ghi vào vở đó mình nói cho bạn hiểu thôi)
Ta có\(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)
=) \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
=) \(\frac{x}{8}=2\)=) x = 16
\(\frac{y}{12}=2\)=) y = 24
\(\frac{z}{15}=2\)=) z = 30
Vậy x=16,y=24 và z=30
Cái gì ko hiểu cứ kết bạn với mình ,mình giảng cho
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.4}=\frac{y}{3.4}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{3.4}=\frac{z}{3.5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\frac{x}{8}=2\Rightarrow x=16\)
\(\frac{y}{12}=2\Rightarrow y=24\)
\(\frac{z}{15}=2\Rightarrow z=30\)
Tìm ba số x,y,z biết rằng:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}vàx+y-z=10\)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\) (1)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\frac{x}{8}=2\Rightarrow x=16\)
\(\frac{y}{12}=2\Rightarrow y=24\)
\(\frac{z}{15}=2\Rightarrow z=30\)
Chúc bạn học tốt ^^
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và x + y + z = 10
Ta có \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)
Quy đồng: \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-5}=\frac{10}{5}=2\)
Vậy \(\frac{x}{8}=2\Rightarrow2.8=16\)
\(\frac{y}{12}=2\Rightarrow2.12=24\)
\(\frac{z}{15}=2\Rightarrow2.15=30\)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\rightarrow\begin{cases}\frac{x}{8}=2\rightarrow x=2\cdot8=16\\\frac{y}{12}=2\rightarrow y=2\cdot12=24\\\frac{z}{15}=2\rightarrow z=2\cdot15=30\end{cases}\)
Tìm 3 số x,y,z biết
\(\frac{x}{2}=\frac{y}{3}và\frac{y}{4}=\frac{z}{5}vàx+y-z=10\)
Ta có:
x/2 = y/3 => x = y/3 × 2 => x = 2/3 × y
y/4 = z/5 => z = y/4 × 5 => z = 5/4 × y
Lại có: x + y - z = 10
=> 2/3 × y + y - 5/4 × y = 10
=> 5/3 × y - 5/4 × y = 10
=> 5 × (1/3 × y - 1/4 × y) = 10
=> y × (1/3 - 1/4) = 10 : 5
=> y × 1/12 = 2
=> y = 2 : 1/12
=> y = 2 × 12 = 24
=> x = 2/3 × 24 = 16
=> z = 24 × 5/4 = 30
Tìm x; y ;z biết: \(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}vàx+y-z=10\)
x+y-z=2y/3+y-5y/4=10=>8y+12y-15y=120=>y=24=>x=16 và z=40
Tìm x;y;z biết \(\frac{x}{2}\)=\(\frac{y}{3}\);\(\frac{y}{4}\)=\(\frac{x}{5}\)và x+y-z=10
\(\frac{x}{2}\)=\(\frac{y}{3}\)=>\(\frac{x.1}{2.4}\)=\(\frac{y.1}{3.4}\)=>\(\frac{x}{8}\)=\(\frac{y}{12}\)( 1 )
\(\frac{y}{4}\)=\(\frac{z}{5}\)=>\(\frac{y.1}{4.3}\)=\(\frac{z.1}{5.3}\)=>\(\frac{y}{12}\)=\(\frac{z}{15}\)( 2 )
Từ ( 1 ) và ( 2 ) => \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)và x+y-z=10
Áp dụng tính chất của dãy tỉ số bằng nhau
Ta được: \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{8+12-15}\)=\(\frac{10}{5}\)=2
Vì \(\frac{x}{8}\)=2 => x=8.2=16
\(\frac{x}{12}\)=2 => y=12.2=24
\(\frac{z}{15}\)=2 => z=15.2=30
Vậy x=16
y=24
z=30
tìm x,y,z biết:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}vàx+y-z=10\)
Theo đề ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\)
Hay \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và x+y -z =10
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
=> \(\frac{x}{8}=2\)
\(\frac{y}{12}=2\)
\(\frac{z}{15}=2\)
=> x= 16
y =24
z = 30
nếu đúng thì tick mình nha Tôi ghét SNSD và thích t ara
\(=>\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}=>\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số = nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
=>x/8=2=>x=16
=>y/12=2=>y=24
=>z/15=2=>z=30
\(\frac{x}{2}\)= \(\frac{y}{3}\); \(\frac{y}{4}\)= \(\frac{z}{5}\) và x+y - z = 10
\(\frac{x}{2}\)=\(\frac{y}{3}\) => \(\frac{x}{8}\)= \(\frac{y}{12}\) ; \(\frac{y}{4}\) =\(\frac{z}{5}\) => \(\frac{y}{12}\)= \(\frac{z}{15}\)
áp dụng công thức của dãy tỉ số bằng nhau :
\(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\) => \(\frac{x+y-z}{8+12-15}\)= \(\frac{10}{5}\)= 2
ta có :
\(\frac{x}{8}\)= 2 => x = 8.2 = 16
\(\frac{y}{12}\)=2=> y = 12.2 = 24
\(\frac{z}{15}\) = 2 => z = 15.2 =30
vậy x = 16
y = 24
z = 30
Tìm các số x,y,z biết rằng:
a) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}vàx+y+z=49\)
b)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}và2x+3y-z=50\)
c)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}vàxyz=810\)
c) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(xyz=810\)
Đặt:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
Ta có:
\(x=2k\)
\(y=3k\)
\(z=5k\)
Thế vào xyz = 810, ta có:
\(2k.3k.5k=810\)
\(30.k^3=810\)
\(k^3=27\)
\(\Rightarrow k=3\)
Tới đây tự tính luôn ok :))
Làm ra mấy bài này ... cũng phải tốn 30p;' của t =))
ukm Trần Hải An
vừa khó + nhiều + mất thời gian = ko làm
tìm x,y,z biết
a)\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}và5x+y-2z=28\)
b)\(\frac{x}{3}=\frac{y}{4},\frac{y}{5}=\frac{z}{7}và2x+3y-z=124\)
c)\(\frac{x}{2}=\frac{y}{3}vàxy=54\)
d)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}vàx+y+z=49\)
e)\(\frac{x}{5}=\frac{y}{3}vàx^2-y^2=4\)
Lời giải:
a, Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\). Mà theo đề bài: 5x + y - 2z = 28
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{5x}{50}=\frac{x}{10}=2\Leftrightarrow x=20\\\frac{y}{6}=2\Leftrightarrow y=12\\\frac{2z}{42}=\frac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)(TMĐK)
Vậy: \(x=20;y=12;z=42\)
b, Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) ; \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\). Mà theo đề bài: 2x+3y - z = 124
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{2x}{30}=\frac{x}{15}=2\Leftrightarrow x=30\\\frac{3y}{60}=\frac{y}{20}=2\Leftrightarrow y=40\\\frac{z}{28}=2\Leftrightarrow z=56\end{matrix}\right.\)(TMĐK)
Vây:\(x=30;y=40;z=56\)
c, Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}\). Mà x.y = 54
\(\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}=\frac{54}{3}=18\)
\(\Rightarrow\frac{x^2}{2}=18\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\}\)
Nếu \(x=6\Rightarrow\frac{6.y}{3}=18\Rightarrow6.y=54\Rightarrow y=9\)
Nếu \(x=-6\Rightarrow\frac{-6.y}{3}=18\Rightarrow-6.y=54\Rightarrow y=-9\)
Vậy: \(\left(x;y\right)\in\left\{\left(6;9\right),\left(-6;-9\right)\right\}\)
d, Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\). Mà theo đề bài, ta có: x + y + z = 49
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12.\left(x+y+z\right)}{18+16+15}=\frac{12.49}{49}=12\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{12x}{18}=\frac{2x}{3}=12\Rightarrow x=18\\\frac{12y}{16}=\frac{3y}{4}=12\Rightarrow y=16\\\frac{12z}{15}=\frac{4z}{5}=12\Rightarrow z=15\end{matrix}\right.\)(TMĐK)
Vậy:\(x=18;y=16;z=15\)
e, Ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\).Mà theo đề bài, ta có: x2 - y2 = 4
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x\in\left\{\frac{5}{2};-\frac{5}{2}\right\}\\\frac{y^2}{9}=\frac{1}{4}\Rightarrow x^2=\frac{9}{4}\Rightarrow x\in\left\{\frac{3}{2};-\frac{3}{2}\right\}\end{matrix}\right.\)(TMĐK)
Vậy:..................................
tìm x,y,z biết
a,\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)và x-y+z=-49
b,\(\frac{x}{3}=\frac{y}{4};\frac{y}{4}=\frac{z}{7}\)và 2x+3y-z=186
c,\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}vàx^2-y^2+2z^2=108\)
a) Ta có : x/2=y/3; y/5=z/4 =>
= x/10=y/15 ; y/15= z/12
=> x/10= y/15=z/12
Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/10=y/15=z/12 = x-y+z / 10-15+12 = (-49)/7 = (-7)
+) Vì x/10 =(-7) => x=(-70)
+) Vì y/15 =(-7) => y=(-105)
+) Vì z/12 =(-7) => z=(-84)
NHẤN ĐÚNG NHA BẠN !
b)
Ta có: x/3=y/4 ; y/4=z/7 => x/3 = y/4=z/7
Ta có: x/3=y/4=z/7 = 2.x/2.3 =3.y/3.4 = z/7
= 2.x/6 = 3.y/12 = z/7
Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:
2.x/6 = 3.y/12 = z/7 = 2.x+3.y-z/ 6+12-7
=186/11
Từ đó tính được x,y,z nha
NHẤN ĐÚNG NHA BẠN
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405